IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i3d10.1007_s00362-015-0712-0.html
   My bibliography  Save this article

Testing epidemic change in nearly nonstationary process with statistics based on residuals

Author

Listed:
  • Jurgita Markevičiūtė

    (Vilnius University)

  • Alfredas Račkauskas

    (Vilnius University)

  • Charles Suquet

    (UMR 8524 CNRS Université Lille I)

Abstract

On the observation of a sample of size n of a first order autoregressive process, we study the detection of an epidemic change in the mean of the innovations of this process. The autoregressive coefficient is either a constant in $$(-1,1)$$ ( - 1 , 1 ) or may depend on n and tend, not too quickly, to 1 as n tends to infinity. Under the null hypothesis, the innovations are i.i.d. mean zero random variables, while under the alternative there is some unknown interval of time, whose length depends on n, during which their expectation is shifted by some common value $$a_n$$ a n . Since innovations are not observed, we build weighted scan statistics based on the least square residuals of the process. Assuming some tail conditions on the innovations, we find the limit distributions of the test statistics under no change and prove consistency for short change interval, e.g. whose length is of the order of $$n^\beta $$ n β for some $$0

Suggested Citation

  • Jurgita Markevičiūtė & Alfredas Račkauskas & Charles Suquet, 2017. "Testing epidemic change in nearly nonstationary process with statistics based on residuals," Statistical Papers, Springer, vol. 58(3), pages 577-606, September.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0712-0
    DOI: 10.1007/s00362-015-0712-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0712-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0712-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. J. Avery & D. A. Henderson, 1999. "Detecting a changed segment in DNA sequences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 489-503.
    2. Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.
    3. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    4. Ansgar Steland, 2002. "Nonparametric monitoring of financial time series by jump-preserving control charts," Statistical Papers, Springer, vol. 43(3), pages 401-422, July.
    5. Achim Zeileis, 2004. "Alternative boundaries for CUSUM tests," Statistical Papers, Springer, vol. 45(1), pages 123-131, January.
    6. Gombay, Edit, 1994. "Testing for change-points with rank and sign statistics," Statistics & Probability Letters, Elsevier, vol. 20(1), pages 49-55, May.
    7. Gabriela Ciuperca, 2014. "Erratum to: Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(4), pages 1231-1232, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    2. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    3. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    4. Shohoudi, Azadeh & Khalili, Abbas & Wolfson, David B. & Asgharian, Masoud, 2016. "Simultaneous variable selection and de-coarsening in multi-path change-point models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 202-217.
    5. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    6. Qiang Li & Liming Wang, 2020. "Robust change point detection method via adaptive LAD-LASSO," Statistical Papers, Springer, vol. 61(1), pages 109-121, February.
    7. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    8. Zhao, Wenbiao & Zhu, Lixing, 2024. "Detecting change structures of nonparametric regressions," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    9. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    10. Karsten Schweikert, 2022. "Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors," Papers 2201.05430, arXiv.org, revised Sep 2024.
    11. Jianbo Li & Yuan Li & Riquan Zhang, 2017. "B spline variable selection for the single index models," Statistical Papers, Springer, vol. 58(3), pages 691-706, September.
    12. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
    13. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    14. Daiqing Xi & Tianxiao Pang, 2021. "Estimating multiple breaks in mean sequentially with fractionally integrated errors," Statistical Papers, Springer, vol. 62(1), pages 451-494, February.
    15. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    16. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    17. Patrik Guggenberger, "undated". "Asymptotics for Stationary Very Nearly Unit Root Processes (joint with D.W.K. Andrews), this version November 2006," UCLA Economics Online Papers 402, UCLA Department of Economics.
    18. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    19. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    20. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0712-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.