IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i4d10.1007_s10260-023-00719-9.html
   My bibliography  Save this article

Statistical indicators based on mobile phone and street maps data for risk management in small urban areas

Author

Listed:
  • Selene Perazzini

    (University of Brescia)

  • Rodolfo Metulini

    (University of Bergamo)

  • Maurizio Carpita

    (University of Brescia)

Abstract

The use of new sources of big data collected at a high-frequency rate in conjunction with administrative data is critical to developing indicators of the exposure to risks of small urban areas. Correctly accounting for the crowding of people and for their movements is crucial to mitigate the effect of natural disasters, while guaranteeing the quality of life in a “smart city” approach. We use two different types of mobile phone data to estimate people crowding and traffic intensity. We analyze the temporal dynamics of crowding and traffic using a Model-Based Functional Cluster Analysis, and their spatial dynamics using the T-mode Principal Component Analysis. Then, we propose five indicators useful for risk management in small urban areas: two composite indicators based on cutting-edge mobile phone dynamic data and three indicators based on open-source street map static data. A case study for the flood-prone area of the Mandolossa (the western outskirts of the city of Brescia, Italy) is presented. We present a multi-dimensional description of the territory based on the proposed indicators at the level of small areas defined by the Italian National Statistical Institute as “Sezioni di Censimento” and “Aree di Censimento”.

Suggested Citation

  • Selene Perazzini & Rodolfo Metulini & Maurizio Carpita, 2024. "Statistical indicators based on mobile phone and street maps data for risk management in small urban areas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1051-1078, September.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:4:d:10.1007_s10260-023-00719-9
    DOI: 10.1007/s10260-023-00719-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00719-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00719-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Rejoinder to the discussion of “Analysis of Spatio-Temporal Mobile Phone Data: a Case Study in the Metropolitan Area of Milan”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 335-338, July.
    2. Rodolfo Metulini & Maurizio Carpita, 2021. "A Spatio-Temporal Indicator for City Users Based on Mobile Phone Signals and Administrative Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 761-781, August.
    3. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 279-300, July.
    4. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    5. Yuming Lin & Zhenjiang Shen, 2022. "An Innovative Index for Evaluating Urban Vulnerability on Pandemic Using LambdaMART Algorithm," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    6. Riccardo Borgoni & Andrea Gilardi & Diego Zappa, 2021. "Assessing the Risk of Car Crashes in Road Networks," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 429-447, August.
    7. Agostino Torti & Marika Arena & Giovanni Azzone & Piercesare Secchi & Simone Vantini, 2022. "Bridge closure in the road network of Lombardy: a spatio-temporal analysis of the socio-economic impacts," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 901-923, October.
    8. Terry Gleason & Richard Staelin, 1975. "A proposal for handling missing data," Psychometrika, Springer;The Psychometric Society, vol. 40(2), pages 229-252, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Metulini & Maurizio Carpita, 2021. "A Spatio-Temporal Indicator for City Users Based on Mobile Phone Signals and Administrative Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 761-781, August.
    2. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    3. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    4. Alessandro Fassò & Francesco Finazzi & Ferdinand Ndongo, 2016. "European Population Exposure to Airborne Pollutants Based on a Multivariate Spatio-Temporal Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 492-511, September.
    5. Secchi, Piercesare, 2018. "On the role of statistics in the era of big data: A call for a debate," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 10-14.
    6. Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
    7. Martha Bohorquez & Ramón Giraldo & Jorge Mateu, 2016. "Optimal sampling for spatial prediction of functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 39-54, March.
    8. Alfredo Cartone & Domenica Panzera, 2021. "Deprivation at local level: Practical problems and policy implications for the province of Milan," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 43-61, February.
    9. Ding, Liang & Huang, Ziqian & Xiao, Chaowei, 2023. "Are human activities consistent with planning? A big data evaluation of master plan implementation in Changchun," Land Use Policy, Elsevier, vol. 126(C).
    10. Pedro Delicado, 2015. "Discussion of “Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan” by Piercesare Secchi, Simone Vantini and Valeria Vitelli," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 329-333, July.
    11. Xinxin Guo & Benyong Wei & Gaozhong Nie & Guiwu Su, 2022. "Application of Mobile Signaling Data in Determining the Seismic Influence Field: A Case Study of the 2017 Mw 6.5 Jiuzhaigou Earthquake, China," IJERPH, MDPI, vol. 19(17), pages 1-23, August.
    12. Orietta Nicolis & Jorge Mateu, 2015. "Discussion of the paper “analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 315-319, July.
    13. Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
    14. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    15. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    16. Andrea Martino & Andrea Ghiglietti & Francesca Ieva & Anna Maria Paganoni, 2019. "A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 301-322, June.
    17. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    18. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
    19. Foschi, Rachele, 2023. "A Point Processes approach to bicycle sharing systems’ design and management," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    20. Jia Guo & Shiyan Ma & Xiang Li, 2022. "Exploring the Differences of Sustainable Urban Development Levels from the Perspective of Multivariate Functional Data Analysis: A Case Study of 33 Cities in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:4:d:10.1007_s10260-023-00719-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.