IDEAS home Printed from https://ideas.repec.org/a/spr/soinre/v156y2021i2d10.1007_s11205-020-02355-2.html
   My bibliography  Save this article

A Spatio-Temporal Indicator for City Users Based on Mobile Phone Signals and Administrative Data

Author

Listed:
  • Rodolfo Metulini

    (University of Salerno)

  • Maurizio Carpita

    (University of Brescia)

Abstract

To know the number of city users is essential since it provides a big amount of useful information in the context of Smart City evaluations that traditional static measures—represented by the number of residents from census data—are not able to provide. In this paper we use spatiotemporal mobile phone data along with administrative data to develop a dynamic indicator for the number of city users. In doing so, we propose a multi-stage approach for high-dimensional data, that, in the first part, it permits to estimate the number of phone company users for different reference days by means of an approach based on Histogram of Oriented Gradients for data dimensionality reduction, and by means of a mix of k-means and Functional Data Analysis Model-Based Clustering methods for clustering days. The second part is aimed at employing a method—based on matching mobile phone and administrative data—to estimate the phone company market share at small area level, which is used to derive city users. Applying the method to the case study of the Municipality of Brescia, we find that our estimated market share outperforms the national level counterpart. Moreover, we find that the number of city users reaches a peak of 270–280 thousand during the central hours of autumn to spring weekdays.

Suggested Citation

  • Rodolfo Metulini & Maurizio Carpita, 2021. "A Spatio-Temporal Indicator for City Users Based on Mobile Phone Signals and Administrative Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 761-781, August.
  • Handle: RePEc:spr:soinre:v:156:y:2021:i:2:d:10.1007_s11205-020-02355-2
    DOI: 10.1007/s11205-020-02355-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11205-020-02355-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11205-020-02355-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Rejoinder to the discussion of “Analysis of Spatio-Temporal Mobile Phone Data: a Case Study in the Metropolitan Area of Milan”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 335-338, July.
    2. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 279-300, July.
    3. Clara Benevolo & Renata Paola Dameri & Beatrice D’Auria, 2016. "Smart Mobility in Smart City," Lecture Notes in Information Systems and Organization, in: Teresina Torre & Alessio Maria Braccini & Riccardo Spinelli (ed.), Empowering Organizations, edition 1, pages 13-28, Springer.
    4. Enrico di Bella & Lucia Leporatti & Filomena Maggino, 2018. "Big Data and Social Indicators: Actual Trends and New Perspectives," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(3), pages 869-878, February.
    5. Annalisa Cicerchia, 1996. "Indicators for the measurement of the quality of urban life," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 39(3), pages 321-358, January.
    6. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    7. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Ying Sun & Marc G. Genton, 2012. "Adjusted functional boxplots for spatio‐temporal data visualization and outlier detection," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 54-64, February.
    8. Ed Diener & Eunkook Suh, 1997. "Measuring Quality Of Life: Economic, Social, And Subjective Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 40(1), pages 189-216, January.
    9. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    10. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    11. Ke C. & Wang Y., 2001. "Semiparametric Nonlinear Mixed-Effects Models and Their Applications," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1272-1298, December.
    12. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    13. Gabrys, Robertas & Kokoszka, Piotr, 2007. "Portmanteau Test of Independence for Functional Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1338-1348, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perazzini, Selene & Metulini, Rodolfo & Carpita, Maurizio, 2023. "Integration of flows and signals data from mobile phone network for statistical analyses of traffic in a flooding risk area," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    2. Rodolfo Metulini & Maurizio Carpita, 2024. "Modeling and forecasting traffic flows with mobile phone big data in flooding risk areas to support a data-driven decision making," Annals of Operations Research, Springer, vol. 342(3), pages 1629-1654, November.
    3. Selene Perazzini & Rodolfo Metulini & Maurizio Carpita, 2024. "Statistical indicators based on mobile phone and street maps data for risk management in small urban areas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1051-1078, September.
    4. Foschi, Rachele, 2023. "A Point Processes approach to bicycle sharing systems’ design and management," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    2. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    3. Selene Perazzini & Rodolfo Metulini & Maurizio Carpita, 2024. "Statistical indicators based on mobile phone and street maps data for risk management in small urban areas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1051-1078, September.
    4. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    5. Alessandro Fassò & Francesco Finazzi & Ferdinand Ndongo, 2016. "European Population Exposure to Airborne Pollutants Based on a Multivariate Spatio-Temporal Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 492-511, September.
    6. Pamučar, Dragan & Durán-Romero, Gemma & Yazdani, Morteza & López, Ana M., 2023. "A decision analysis model for smart mobility system development under circular economy approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    7. Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
    8. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    9. Kfir Noy & Moshe Givoni, 2018. "Is ‘Smart Mobility’ Sustainable? Examining the Views and Beliefs of Transport’s Technological Entrepreneurs," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    10. Philippe Apparicio & Anne-Marie Séguin & Daniel Naud, 2008. "The Quality of the Urban Environment Around Public Housing Buildings in Montréal: An Objective Approach Based on GIS and Multivariate Statistical Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 86(3), pages 355-380, May.
    11. Emilio Colombo & Alessandra Michelangeli & Luca Stanca, 2014. "La Dolce Vita : Hedonic Estimates of Quality of Life in Italian Cities," Regional Studies, Taylor & Francis Journals, vol. 48(8), pages 1404-1418, August.
    12. Chunfang Liu & Bin Yu & Yue Zhu & Licheng Liu & Pengjie Li, 2019. "Measurement of Rural Residents’ Mobility in Western China: A Case Study of Qingyang, Gansu Province," Sustainability, MDPI, vol. 11(9), pages 1-21, April.
    13. Alfredo Cartone & Domenica Panzera, 2021. "Deprivation at local level: Practical problems and policy implications for the province of Milan," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 43-61, February.
    14. Ding, Liang & Huang, Ziqian & Xiao, Chaowei, 2023. "Are human activities consistent with planning? A big data evaluation of master plan implementation in Changchun," Land Use Policy, Elsevier, vol. 126(C).
    15. Jules Muvuna & Tuleen Boutaleb & Slobodan B. Mickovski & Keith Baker & Ghoreyshi Seyed Mohammad & Mario Cools & Wissal Selmi, 2020. "Information Integration in a Smart City System—A Case Study on Air Pollution Removal by Green Infrastructure through a Vehicle Smart Routing System," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    16. Marta Christina SUCIU & Marco SAVASTANO & Gheorghe Alexandru STATIVA & Irina GORELOVA, 2020. "Smart mobility: a comparison between the social media strategies for the public urban mobility services of Rome and Bucharest," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 8, pages 303-320, November.
    17. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    18. Francisco Maciá Pérez & José Vicente Berna Martínez & Iren Lorenzo Fonseca, 2021. "Modelling and Implementing Smart Universities: An IT Conceptual Framework," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    19. Orietta Nicolis & Jorge Mateu, 2015. "Discussion of the paper “analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 315-319, July.
    20. Andrea Ciacci & Enrico Ivaldi & Reyes González-Relaño, 2021. "A Partially Non-Compensatory Method to Measure the Smart and Sustainable Level of Italian Municipalities," Sustainability, MDPI, vol. 13(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:soinre:v:156:y:2021:i:2:d:10.1007_s11205-020-02355-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.