ARMA model checking with data-driven portmanteau tests
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-023-00720-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
- Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
- Xuexin Wang & Yixiao Sun, 2022. "A Simple Asymptotically F-Distributed Portmanteau Test for Diagnostic Checking of Time Series Models With Uncorrelated Innovations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 505-521, April.
- Juan Carlos Escanciano & Ignacio N. Lobato & Lin Zhu, 2013. "Automatic Specification Testing for Vector Autoregressions and Multivariate Nonlinear Time Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 426-437, October.
- Miguel A. Delgado & Javier Hidalgo & Carlos Velasco, 2005.
"Distribution Free Goodness-of-Fit Tests for Linear Processes,"
STICERD - Econometrics Paper Series
482, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Delgado, Miguel A. & Hidalgo, Javier & Velasco, Carlos, 2005. "Distribution free goodness-of-fit tests for linear processes," LSE Research Online Documents on Economics 6840, London School of Economics and Political Science, LSE Library.
- Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
- Delgado, Miguel A. & Velasco, Carlos, 2011. "An Asymptotically Pivotal Transform of the Residuals Sample Autocorrelations With Application to Model Checking," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 946-958.
- Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Ke & Li, Wai Keung, 2015.
"A bootstrapped spectral test for adequacy in weak ARMA models,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
- Zhu, Ke & Li, Wai-Keung, 2013. "A bootstrapped spectral test for adequacy in weak ARMA models," MPRA Paper 51224, University Library of Munich, Germany.
- Pedro H. C. Sant’Anna, 2017.
"Testing for Uncorrelated Residuals in Dynamic Count Models With an Application to Corporate Bankruptcy,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 349-358, July.
- Sant'Anna, Pedro H. C., 2013. "Testing for Uncorrelated Residuals in Dynamic Count Models with an Application to Corporate Bankruptcy," MPRA Paper 48376, University Library of Munich, Germany.
- Guay, Alain & Guerre, Emmanuel & Lazarová, Štěpána, 2013. "Robust adaptive rate-optimal testing for the white noise hypothesis," Journal of Econometrics, Elsevier, vol. 176(2), pages 134-145.
- Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
- Adrian Wai‐Kong Cheung & Jen‐Je Su & Astrophel Kim Choo, 2012. "Are exchange rates serially correlated? New evidence from the Euro FX markets," Review of Financial Economics, John Wiley & Sons, vol. 21(1), pages 14-20, January.
- Ke Zhu, 2016.
"Bootstrapping the portmanteau tests in weak auto-regressive moving average models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
- Zhu, Ke, 2015. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," MPRA Paper 61930, University Library of Munich, Germany.
- Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
- Zdeněk Hlávka & Marie Hušková & Claudia Kirch & Simos G. Meintanis, 2017. "Fourier--type tests involving martingale difference processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(4), pages 468-492, April.
- Chang, Jinyuan & Yao, Qiwei & Zhou, Wen, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," LSE Research Online Documents on Economics 68531, London School of Economics and Political Science, LSE Library.
- Guangwei Zhu & Zaichao Du & Juan Carlos Escanciano, 2017.
"Automatic portmanteau tests with applications to market risk management,"
Stata Journal, StataCorp LP, vol. 17(4), pages 901-915, December.
- Zaichao Du & Juan Carlos Escanciano & Guangwei Zhu, 2017. "Automatic Portmanteau Tests with Applications to Market Risk Management," CAEPR Working Papers 2017-002, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
- Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
- Adrian Wai-Kong Cheung & Jen-Je Su & Astrophel Kim Choo, 2011. "Are Euro exchange rates markets efficient? New evidence from a large panel," Discussion Papers in Finance finance:201109, Griffith University, Department of Accounting, Finance and Economics.
- Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
- Proietti, Tommaso & Luati, Alessandra, 2015.
"The generalised autocovariance function,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
- Tommaso, Proietti & Alessandra, Luati, 2012. "The Generalised Autocovariance Function," MPRA Paper 43711, University Library of Munich, Germany.
- Tommaso Proietti & Alessandra Luati, 2013. "The Generalised Autocovariance Function," CEIS Research Paper 276, Tor Vergata University, CEIS, revised 30 Apr 2013.
- Nankervis, John C. & Savin, N. E., 2010. "Testing for Serial Correlation: Generalized Andrews–Ploberger Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 246-255.
- Alfredo García-Hiernaux, 2009. "Diagnostic checking using subspace methods," Documentos de Trabajo del ICAE 2009-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Escanciano, Juan Carlos & Mayoral, Silvia, 2010.
"Data-driven smooth tests for the martingale difference hypothesis,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1983-1998, August.
- Juan Carlos Escanciano & Silvia Mayoral, 2007. "Data-Driven Smooth Tests for the Martingale Difference Hypothesis," Faculty Working Papers 01/07, School of Economics and Business Administration, University of Navarra.
- Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
- Gourieroux, Christian & Jasiak, Joann, 2019.
"Robust analysis of the martingale hypothesis,"
Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
- Christian Gouriéroux & Joann Jasiak, 2016. "Robust Analysis of the Martingale Hypothesis," Working Papers 2016-18, Center for Research in Economics and Statistics.
More about this item
Keywords
Time series model fitting; White noise test; Recursive residuals; Residual autocorrelations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-023-00720-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.