IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v29y2020i4d10.1007_s10260-020-00508-8.html
   My bibliography  Save this article

Multivariate power series interpoint distances

Author

Listed:
  • Reza Modarres

    (George Washington University)

  • Yu Song

    (George Washington University)

Abstract

We establish (a) the probability mass function of the interpoint distance (IPD) between random vectors that are drawn from the multivariate power series family of distributions (MPSD); (b) obtain the distribution of the IPD within one sample and across two samples from this family; (c) determine the distribution of the MPSD Euclidean norm and distance from fixed points in $${\mathbb {Z}}^d$$ Z d ; and (d) provide the distribution of the IPDs of vectors drawn from a mixture of the MPSD distributions. We present a method for testing the homogeneity of MPSD mixtures using the sample IPDs.

Suggested Citation

  • Reza Modarres & Yu Song, 2020. "Multivariate power series interpoint distances," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 955-982, December.
  • Handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00508-8
    DOI: 10.1007/s10260-020-00508-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00508-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00508-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berrendero, José R. & Cuevas, Antonio & Pateiro-López, Beatriz, 2016. "Shape classification based on interpoint distance distributions," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 237-247.
    2. Zhang, Peng & Wang, Xiaogang & Song, Peter X.K., 2006. "Clustering Categorical Data Based on Distance Vectors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 355-367, March.
    3. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    4. Zhenyu Liu & Reza Modarres, 2011. "A triangle test for equality of distribution functions in high dimensions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 605-615.
    5. W. Lok & Stephen Lee, 2011. "A new statistical depth function with applications to multimodal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 617-631.
    6. Hall, Peter & Titterington, D. M. & Xue, Jing-Hao, 2009. "Median-Based Classifiers for High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1597-1608.
    7. Peter Hall, 2002. "Permutation tests for equality of distributions in high-dimensional settings," Biometrika, Biometrika Trust, vol. 89(2), pages 359-374, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    2. Mondal, Pronoy K. & Biswas, Munmun & Ghosh, Anil K., 2015. "On high dimensional two-sample tests based on nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 168-178.
    3. Reza Modarres, 2020. "Graphical Comparison of High‐Dimensional Distributions," International Statistical Review, International Statistical Institute, vol. 88(3), pages 698-714, December.
    4. Paul, Biplab & De, Shyamal K. & Ghosh, Anil K., 2022. "Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    7. Liu, Zhi & Xia, Xiaochao & Zhou, Wang, 2015. "A test for equality of two distributions via jackknife empirical likelihood and characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 97-114.
    8. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    9. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    10. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    11. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    12. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    13. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    14. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    15. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    16. Federico A. Bugni & Joel L. Horowitz, 2021. "Permutation tests for equality of distributions of functional data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 861-877, November.
    17. Ludwig Baringhaus & Norbert Henze, 2016. "Revisiting the two-sample runs test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 432-448, September.
    18. Xu Li & Wenjuan Hu & Baoxue Zhang, 2023. "Measuring and testing homogeneity of distributions by characteristic distance," Statistical Papers, Springer, vol. 64(2), pages 529-556, April.
    19. Jun Li, 2018. "Asymptotic normality of interpoint distances for high-dimensional data with applications to the two-sample problem," Biometrika, Biometrika Trust, vol. 105(3), pages 529-546.
    20. Ye, Mao & Zhang, Peng & Nie, Lizhen, 2018. "Clustering sparse binary data with hierarchical Bayesian Bernoulli mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 32-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00508-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.