IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i3p605-615.html
   My bibliography  Save this article

A triangle test for equality of distribution functions in high dimensions

Author

Listed:
  • Zhenyu Liu
  • Reza Modarres

Abstract

A triangle statistic is proposed for testing the equality of two multivariate continuous distributions in high-dimensional settings based on sample interpoint distances. Given two independent p-dimensional random samples, a triangle can be formed by randomly selecting one observation from one sample and two observations from the other sample. The triangle statistic estimates the probability that the distance between the two observations from the same distribution is the largest, the middle or the smallest in the triangle being formed by these three observations. We show that the test based on the triangle statistic is asymptotically distribution-free under the null hypothesis of equal, but unknown continuous distribution functions. The triangle test is compared with other nonparametric tests through a simulation study. The triangle statistic is well defined when the number of variables p is larger than the number of observations m, and its computational complexity is independent of p, making it suitable for high-dimensional settings.

Suggested Citation

  • Zhenyu Liu & Reza Modarres, 2011. "A triangle test for equality of distribution functions in high dimensions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 605-615.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:3:p:605-615
    DOI: 10.1080/10485252.2010.485644
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2010.485644
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2010.485644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    2. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    3. Liu, Zhi & Xia, Xiaochao & Zhou, Wang, 2015. "A test for equality of two distributions via jackknife empirical likelihood and characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 97-114.
    4. Modarres, Reza, 2014. "On the interpoint distances of Bernoulli vectors," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 215-222.
    5. Reza Modarres & Yu Song, 2020. "Multivariate power series interpoint distances," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 955-982, December.
    6. Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Paul, Biplab & De, Shyamal K. & Ghosh, Anil K., 2022. "Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    8. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    9. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    10. Petrie, Adam, 2016. "Graph-theoretic multisample tests of equality in distribution for high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 145-158.
    11. Mondal, Pronoy K. & Biswas, Munmun & Ghosh, Anil K., 2015. "On high dimensional two-sample tests based on nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 168-178.
    12. Reza Modarres, 2020. "Graphical Comparison of High‐Dimensional Distributions," International Statistical Review, International Statistical Institute, vol. 88(3), pages 698-714, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:3:p:605-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.