IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v29y2020i1d10.1007_s10260-019-00472-y.html
   My bibliography  Save this article

A note on the asymptotic and exact Fisher information matrices of a Markov switching VARMA process

Author

Listed:
  • Maddalena Cavicchioli

    (University of Modena and Reggio Emilia)

Abstract

We study the asymptotic and exact Fisher information (FI) matrices of Markov switching vector autoregressive moving average (MS VARMA) models. In a related paper (2017), we propose a method to derive an explicit expression in closed form for the asymptotic FI matrix of the underlying model, and use such a matrix to derive the asymptotic covariance matrix of the Gaussian maximum likelihood (ML) estimator of the parameters in the MS VARMA model. In this paper, the exact FI matrix of a Gaussian MS VARMA process is considered for a time series of length T in relation to the exact ML estimation method. Furthermore, we prove that the Gaussian exact FI matrix converges in probability to the asymptotic FI matrix when the sample size T goes to infinity.

Suggested Citation

  • Maddalena Cavicchioli, 2020. "A note on the asymptotic and exact Fisher information matrices of a Markov switching VARMA process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 129-139, March.
  • Handle: RePEc:spr:stmapp:v:29:y:2020:i:1:d:10.1007_s10260-019-00472-y
    DOI: 10.1007/s10260-019-00472-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-019-00472-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-019-00472-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavicchioli, Maddalena, 2017. "Asymptotic Fisher information matrix of Markov switching VARMA models," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 124-135.
    2. André Klein & Guy Melard & Abdessamad Saidi, 2008. "The asymptotic and exact Fisher information matrices," ULB Institutional Repository 2013/13766, ULB -- Universite Libre de Bruxelles.
    3. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    4. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    5. Bao, Yong & Hua, Ying, 2014. "On the Fisher information matrix of a vector ARMA process," Economics Letters, Elsevier, vol. 123(1), pages 14-16.
    6. Maddalena Cavicchioli, 2014. "Analysis Of The Likelihood Function For Markov-Switching Var(Ch) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 624-639, November.
    7. Yang, Minxian, 2000. "Some Properties Of Vector Autoregressive Processes With Markov-Switching Coefficients," Econometric Theory, Cambridge University Press, vol. 16(1), pages 23-43, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavicchioli, Maddalena, 2017. "Asymptotic Fisher information matrix of Markov switching VARMA models," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 124-135.
    2. Cavicchioli, Maddalena, 2024. "A matrix unified framework for deriving various impulse responses in Markov switching VAR: Evidence from oil and gas markets," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    3. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    4. Maddalena Cavicchioli, 2020. "Invertibility and VAR Representations of Time-Varying Dynamic Stochastic General Equilibrium Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 61-86, January.
    5. Cavicchioli, Maddalena, 2023. "Impulse response function analysis for Markov switching var models," Economics Letters, Elsevier, vol. 232(C).
    6. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    7. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    8. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    9. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    10. BenSaïda, Ahmed & Litimi, Houda & Abdallah, Oussama, 2018. "Volatility spillover shifts in global financial markets," Economic Modelling, Elsevier, vol. 73(C), pages 343-353.
    11. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    12. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    13. Maddalena Cavicchioli, 2015. "Likelihood Ratio Test and Information Criteria for Markov Switching Var Models: An Application to the Italian Macroeconomy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(3), pages 315-332, November.
    14. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    15. Maddalena Cavicchioli, 2014. "Analysis Of The Likelihood Function For Markov-Switching Var(Ch) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 624-639, November.
    16. Cavicchioli, Maddalena, 2013. "Spectral density of Markov-switching VARMA models," Economics Letters, Elsevier, vol. 121(2), pages 218-220.
    17. Abdelhakim Aknouche & Nadia Rabehi, 2010. "On an independent and identically distributed mixture bilinear time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 113-131, March.
    18. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & María de la Cruz Del Río-Rama & José Álvarez-García, 2022. "Using Markov-Switching Models in US Stocks Optimal Portfolio Selection in a Black–Litterman Context (Part 1)," Mathematics, MDPI, vol. 10(8), pages 1-28, April.
    19. Marçal, Emerson & Simões, Oscar Rodrigues, 2024. "Current account and real effective exchange rate dynamics: the role of non-linear dynamics in Brazil," Textos para discussão 571, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    20. Yacouba Boubacar Maïnassara & Landy Rabehasaina, 2020. "Estimation of weak ARMA models with regime changes," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 1-52, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:29:y:2020:i:1:d:10.1007_s10260-019-00472-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.