IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v34y2018i2p557-572n14.html
   My bibliography  Save this article

Population Size Estimation Using Multiple Incomplete Lists with Overcoverage

Author

Listed:
  • Di Cecco Davide

    (Italian National Statistical Institute, via Cesare Balbo 16, Rome00184, Italy.)

  • Di Zio Marco

    (Italian National Statistical Institute, via Cesare Balbo 16, Rome00184, Italy.)

  • Filipponi Danila

    (Italian National Statistical Institute, via Cesare Balbo 16, Rome00184, Italy.)

  • Rocchetti Irene

    (Italian National Statistical Institute, via Cesare Balbo 16, Rome00184, Italy.)

Abstract

The quantity and quality of administrative information available to National Statistical Institutes have been constantly increasing over the past several years. However, different sources of administrative data are not expected to each have the same population coverage, so that estimating the true population size from the collective set of data poses several methodological challenges that set the problem apart from a classical capture-recapture setting. In this article, we consider two specific aspects of this problem: (1) misclassification of the units, leading to lists with both overcoverage and undercoverage; and (2) lists focusing on a specific subpopulation, leaving a proportion of the population with null probability of being captured. We propose an approach to this problem that employs a class of capturerecapture methods based on Latent Class models. We assess the proposed approach via a simulation study, then apply the method to five sources of empirical data to estimate the number of active local units of Italian enterprises in 2011.

Suggested Citation

  • Di Cecco Davide & Di Zio Marco & Filipponi Danila & Rocchetti Irene, 2018. "Population Size Estimation Using Multiple Incomplete Lists with Overcoverage," Journal of Official Statistics, Sciendo, vol. 34(2), pages 557-572, June.
  • Handle: RePEc:vrs:offsta:v:34:y:2018:i:2:p:557-572:n:14
    DOI: 10.2478/jos-2018-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2018-0026
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2018-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shirley Pledger, 2000. "Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures," Biometrics, The International Biometric Society, vol. 56(2), pages 434-442, June.
    2. Francesco Bartolucci & Antonio Forcina, 2001. "Analysis of Capture-Recapture Data with a Rasch-Type Model Allowing for Conditional Dependence and Multidimensionality," Biometrics, The International Biometric Society, vol. 57(3), pages 714-719, September.
    3. Li‐Chun Zhang, 2012. "Topics of statistical theory for register‐based statistics and data integration," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(1), pages 41-63, February.
    4. Elena Stanghellini & Peter G. M. van der Heijden, 2004. "A Multiple-Record Systems Estimation Method that Takes Observed and Unobserved Heterogeneity into Account," Biometrics, The International Biometric Society, vol. 60(2), pages 510-516, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang Li-Chun, 2019. "A Note on Dual System Population Size Estimator," Journal of Official Statistics, Sciendo, vol. 35(1), pages 279-283, March.
    2. Peter G. M. van der Heijden & Maarten Cruyff & Paul A. Smith & Christine Bycroft & Patrick Graham & Nathaniel Matheson‐Dunning, 2022. "Multiple system estimation using covariates having missing values and measurement error: Estimating the size of the Māori population in New Zealand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 156-177, January.
    3. Ton de Waal & Arnout van Delden & Sander Scholtus, 2020. "Multi‐source Statistics: Basic Situations and Methods," International Statistical Review, International Statistical Institute, vol. 88(1), pages 203-228, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    2. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    3. Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
    4. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.
    5. Shira Mitchell & Al Ozonoff & Alan M. Zaslavsky & Bethany Hedt-Gauthier & Kristian Lum & Brent A. Coull, 2013. "A Comparison of Marginal and Conditional Models for Capture–Recapture Data with Application to Human Rights Violations Data," Biometrics, The International Biometric Society, vol. 69(4), pages 1022-1032, December.
    6. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    7. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    8. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    9. Peter G. M. van der Heijden & Maarten Cruyff & Paul A. Smith & Christine Bycroft & Patrick Graham & Nathaniel Matheson‐Dunning, 2022. "Multiple system estimation using covariates having missing values and measurement error: Estimating the size of the Māori population in New Zealand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 156-177, January.
    10. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    11. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    12. Bakker Bart F.M. & Heijden Peter G.M. van der & Scholtus Sander, 2015. "Preface," Journal of Official Statistics, Sciendo, vol. 31(3), pages 349-355, September.
    13. Fulvia Cerroni & Grazia Di Bella & Lorena Galiè, 2014. "Evaluating administrative data quality as inputof the statistical production process," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 16(1-2), pages 117-146.
    14. Fabrizio Antolini & Laura Grassini, 2020. "Methodological problems in the economic measurement of tourism: the need for new sources of information," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1769-1780, December.
    15. Elżbieta Gołata, 2016. "Shift In Methodology And Population Census Quality," Statistics in Transition New Series, Polish Statistical Association, vol. 17(4), pages 631-658, December.
    16. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    17. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    18. Richard Huggins & Wen‐Han Hwang, 2007. "Non‐parametric estimation of population size from capture–recapture data when the capture probability depends on a covariate," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 429-443, August.
    19. Li-Chun Zhang & Ib Thomsen & Øyvin Kleven, 2013. "On the Use of Auxiliary and Paradata for Dealing With Non-sampling Errors in Household Surveys," International Statistical Review, International Statistical Institute, vol. 81(2), pages 270-288, August.
    20. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:34:y:2018:i:2:p:557-572:n:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.