IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v17y2008i1p3-12.html
   My bibliography  Save this article

Testing normality in the presence of outliers

Author

Listed:
  • Daniele Coin

Abstract

No abstract is available for this item.

Suggested Citation

  • Daniele Coin, 2008. "Testing normality in the presence of outliers," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 3-12, February.
  • Handle: RePEc:spr:stmapp:v:17:y:2008:i:1:p:3-12
    DOI: 10.1007/s10260-007-0046-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-007-0046-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-007-0046-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony C. Atkinson, 2002. "Forward search added-variable t-tests and the effect of masked outliers on model selection," Biometrika, Biometrika Trust, vol. 89(4), pages 939-946, December.
    2. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    3. Anthony Atkinson & Marco Riani, 2004. "The forward search and data visualisation," Computational Statistics, Springer, vol. 19(1), pages 29-54, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minguez, Ana & Javier Sese, F., 2022. "Why do you want a relationship, anyway? Consent to receive marketing communications and donors’ willingness to engage with nonprofits," Journal of Business Research, Elsevier, vol. 148(C), pages 356-367.
    2. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    3. Gustavo Castilho Beruski & Luis Miguel Schiebelbein & André Belmont Pereira, 2020. "Maize Yield Components as Affected by Plant Population, Planting Date and Soil Coverings in Brazil," Agriculture, MDPI, vol. 10(12), pages 1-20, November.
    4. Ali Derakhshan Asl & Kuan Yew Wong & Manoj Kumar Tiwari, 2016. "Unequal-area stochastic facility layout problems: solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 799-823, February.
    5. repec:ers:journl:v:volumexxi:y:2018:i:issue4:p:622-636 is not listed on IDEAS
    6. Lauren Bin Dong & David E. A. Giles, 2004. "An Empirical Likelihood Ratio Test for Normality," Econometrics Working Papers 0401, Department of Economics, University of Victoria.
    7. Anthony Medford & James W. Vaupel, 2020. "Extremes are not normal: a reminder to demographers," Journal of Population Research, Springer, vol. 37(1), pages 91-106, March.
    8. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    9. Vexler, Albert & Gurevich, Gregory, 2010. "Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 531-545, February.
    10. Shalit, Haim, 2012. "Using OLS to test for normality," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2050-2058.
    11. Anthony C. Atkinson & Marco Riani & Aldo Corbellini, 2020. "The analysis of transformations for profit‐and‐loss data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 251-275, April.
    12. Shah, Chandra, 1997. "Model selection in univariate time series forecasting using discriminant analysis," International Journal of Forecasting, Elsevier, vol. 13(4), pages 489-500, December.
    13. Aurea Grané & Giancarlo Manzi & Silvia Salini, 2021. "Smart Visualization of Mixed Data," Stats, MDPI, vol. 4(2), pages 1-14, June.
    14. Predrag Petrović & Goran Nikolić, 2018. "Schumpeterian Growth Theory: Empirical Testing Of Barriers To Competition-Proximity To Frontier Algorithm," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 63(217), pages 7-38, April – J.
    15. Seongmin Kang & Jeahyung Cha & Changsang Cho & Ki-Hyun Kim & Eui-Chan Jeon, 2020. "Estimation of appropriate CO2 concentration sampling cycle for MSW incinerators," Energy & Environment, , vol. 31(3), pages 535-544, May.
    16. Domenico Perrotta & Marco Riani & Francesca Torti, 2009. "New robust dynamic plots for regression mixture detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 263-279, December.
    17. Menjoge, Rajiv S. & Welsch, Roy E., 2010. "A diagnostic method for simultaneous feature selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3181-3193, December.
    18. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    19. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    20. Yang, J. & Greenwood, D. J. & Rowell, D. L. & Wadsworth, G. A. & Burns, I. G., 2000. "Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE," Agricultural Systems, Elsevier, vol. 64(1), pages 37-53, April.
    21. repec:dau:papers:123456789/2714 is not listed on IDEAS
    22. Sung-Soo Kim & Sung Park & W. J. Krzanowski, 2008. "Simultaneous variable selection and outlier identification in linear regression using the mean-shift outlier model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 283-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:17:y:2008:i:1:p:3-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.