IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v14y2022i2d10.1007_s12561-022-09341-x.html
   My bibliography  Save this article

Clinical Trials with External Control: Beyond Propensity Score Matching

Author

Listed:
  • Hongwei Wang

    (Data and Statistical Sciences, AbbVie)

  • Yixin Fang

    (Data and Statistical Sciences, AbbVie)

  • Weili He

    (Data and Statistical Sciences, AbbVie)

  • Ruizhe Chen

    (University of Illinois Chicago)

  • Su Chen

    (Data and Statistical Sciences, AbbVie)

Abstract

Real-world data (RWD) is playing an increasingly important role in drug development from early discovery throughout the life-cycle management. This includes leveraging RWD in randomized clinical trial (RCT) design and study conduct. In many scenarios, a concurrent control arm may not be viable for ethical or practical considerations, and inclusion of an external control arm can greatly facilitate the decision-making and interpretation of findings. We summarize the strengths and limitations of typical external data sources including historical RCT, aggregated data at study level from literature, patient registry, health insurance claims, electronic health records in terms of fit-for-purpose data selection. To address the inherent confounding due to lack of randomization, propensity score matching method has the advantages of separating the design from analysis and providing the ability to explicitly examine the degree of overlap in confounders. Within the framework of causal inference, however, many alternatives have been proposed with desirable theoretical properties. In this article, we review key steps from study design conceptualization to data source selection, and focus on several methods for evaluation of performance in the context of creating external control for clinical trials. We conducted a focused simulation studies to assess bias reduction and statistical properties when underlying assumptions are violated or models are mis-specified. The results support that analysis using matched group improve bias reduction when sample size is not a limiting factor, and targeted maximum likelihood estimation coupled with super learner is robust when estimating both average treatment effects and average treatment effects among treated.

Suggested Citation

  • Hongwei Wang & Yixin Fang & Weili He & Ruizhe Chen & Su Chen, 2022. "Clinical Trials with External Control: Beyond Propensity Score Matching," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 304-317, July.
  • Handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-022-09341-x
    DOI: 10.1007/s12561-022-09341-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-022-09341-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-022-09341-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DiMasi, Joseph A. & Grabowski, Henry G. & Hansen, Ronald W., 2016. "Innovation in the pharmaceutical industry: New estimates of R&D costs," Journal of Health Economics, Elsevier, vol. 47(C), pages 20-33.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    3. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    4. Dosis, Anastasios & Muthoo, Abhinay, 2019. "Experimentation in Dynamic R&D Competition," CRETA Online Discussion Paper Series 52, Centre for Research in Economic Theory and its Applications CRETA.
    5. Yusuke Oh & Koji Takahashi, 2020. "R&D and Innovation: Evidence from Patent Data," Bank of Japan Working Paper Series 20-E-7, Bank of Japan.
    6. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    7. Tran Linh & Petersen Maya & Schwab Joshua & van der Laan Mark J., 2023. "Robust variance estimation and inference for causal effect estimation," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-27, January.
    8. Gamba, Simona & Magazzini, Laura & Pertile, Paolo, 2021. "R&D and market size: Who benefits from orphan drug legislation?," Journal of Health Economics, Elsevier, vol. 80(C).
    9. Branstetter, Lee & Chatterjee, Chirantan & Higgins, Matthew J., 2022. "Generic competition and the incentives for early-stage pharmaceutical innovation," Research Policy, Elsevier, vol. 51(10).
    10. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    11. Hisaki Kono & Yasuyuki Sawada & Abu S. Shonchoy, 2016. "DVD-based Distance-learning Program for University Entrance Exams: Experimental Evidence from Rural Bangladesh," CIRJE F-Series CIRJE-F-1027, CIRJE, Faculty of Economics, University of Tokyo.
    12. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    13. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    14. Unsal, Omer & Houston, Reza, 2024. "R&D grants and medical innovation," Journal of Economics and Business, Elsevier, vol. 128(C).
    15. Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
    16. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    17. Alfred B. Ordman, 2022. "When Will the FDA Do What Is in People’s Best Interests?," American Journal of Economics and Sociology, Wiley Blackwell, vol. 81(4), pages 721-751, September.
    18. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    19. Edouard Debonneuil & Anne Eyraud-Loisel & Frédéric Planchet, 2018. "Can Pension Funds Partially Manage Longevity Risk by Investing in a Longevity Megafund?," Risks, MDPI, vol. 6(3), pages 1-27, July.
    20. Everding, Jakob & Marcus, Jan, 2020. "The effect of unemployment on the smoking behavior of couples," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 29(2), pages 154-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-022-09341-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.