IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v14y2022i2d10.1007_s12561-022-09334-w.html
   My bibliography  Save this article

A Simulation-Based Evaluation of Statistical Methods for Hybrid Real-World Control Arms in Clinical Trials

Author

Listed:
  • Mingyang Shan

    (Eli Lilly and Company, Real World Analytics)

  • Douglas Faries

    (Eli Lilly and Company, Real World Analytics)

  • Andy Dang

    (Eli Lilly and Company, Real World Analytics)

  • Xiang Zhang

    (CSL Behring, Quantitative Clinical Sciences and Reporting)

  • Zhanglin Cui

    (Eli Lilly and Company, Real World Analytics)

  • Kristin M. Sheffield

    (Eli Lilly and Company, Global Patient Outcomes and Real World Evidence)

Abstract

Real-world (RW) data have been a source for creating external control arms to evaluate results from randomized controlled trials (RCTs) in rare diseases and scenarios where randomization to a control group is unethical or unfeasible. However, the validity of any decision making based on such comparative results depends heavily on the appropriateness and quality of the control arm data. FDA guidance lists multiple bias-generating concerns with the use of real-world controls arising from data quality and validity issues, which we frame as a data source ignorability assumption under the potential outcome framework. Hybrid control designs, RCTs with a full treatment group and a small underpowered control group supplemented with RW control data, have the potential to address some of these bias concerns. Statistical methods have been proposed for the analysis of hybrid designs and can adjust for potential violations of the data source ignorability assumption. A simulation study is presented to evaluate the operating characteristics of single and hybrid real-world control methods across the bias-generating scenarios mentioned in FDA guidance. Results suggest that certain methods can adjust for potential biases under these scenarios but may result in reduced efficiency through larger standard errors, or type I error inflation. Implications for the use of such methods and suggestions for additional work are discussed.

Suggested Citation

  • Mingyang Shan & Douglas Faries & Andy Dang & Xiang Zhang & Zhanglin Cui & Kristin M. Sheffield, 2022. "A Simulation-Based Evaluation of Statistical Methods for Hybrid Real-World Control Arms in Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 259-284, July.
  • Handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-022-09334-w
    DOI: 10.1007/s12561-022-09334-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-022-09334-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-022-09334-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    2. Franklin, Jessica M. & Schneeweiss, Sebastian & Polinski, Jennifer M. & Rassen, Jeremy A., 2014. "Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 219-226.
    3. Brian K Lee & Justin Lessler & Elizabeth A Stuart, 2011. "Weight Trimming and Propensity Score Weighting," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-6, March.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenglong Li & Jordan Lawson, 2021. "A generalized bootstrap procedure of the standard error and confidence interval estimation for inverse probability of treatment weighting," Papers 2109.00171, arXiv.org.
    2. Paul B. Ellickson & Wreetabrata Kar & James C. Reeder, 2023. "Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions," Marketing Science, INFORMS, vol. 42(4), pages 704-728, July.
    3. Jiangang Liao & Charles Rohde, 2022. "Variance reduction in the inverse probability weighted estimators for the average treatment effect using the propensity score," Biometrics, The International Biometric Society, vol. 78(2), pages 660-667, June.
    4. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    5. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    6. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    7. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    8. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    9. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    10. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    11. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    12. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    13. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    14. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    15. Pang Menglan & Schuster Tibor & Filion Kristian B. & Schnitzer Mireille E. & Eberg Maria & Platt Robert W., 2016. "Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data – A Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weigh," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-12, November.
    16. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    17. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    18. Reizer, Balázs, 2022. "Employment and Wage Consequences of Flexible Wage Components," Labour Economics, Elsevier, vol. 78(C).
    19. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    20. Nazmul Islam & Natalie E. Sheils & Megan S. Jarvis & Kenneth Cohen, 2022. "Comparative effectiveness over time of the mRNA-1273 (Moderna) vaccine and the BNT162b2 (Pfizer-BioNTech) vaccine," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-022-09334-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.