IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v14y2022i2d10.1007_s12561-022-09334-w.html
   My bibliography  Save this article

A Simulation-Based Evaluation of Statistical Methods for Hybrid Real-World Control Arms in Clinical Trials

Author

Listed:
  • Mingyang Shan

    (Eli Lilly and Company, Real World Analytics)

  • Douglas Faries

    (Eli Lilly and Company, Real World Analytics)

  • Andy Dang

    (Eli Lilly and Company, Real World Analytics)

  • Xiang Zhang

    (CSL Behring, Quantitative Clinical Sciences and Reporting)

  • Zhanglin Cui

    (Eli Lilly and Company, Real World Analytics)

  • Kristin M. Sheffield

    (Eli Lilly and Company, Global Patient Outcomes and Real World Evidence)

Abstract

Real-world (RW) data have been a source for creating external control arms to evaluate results from randomized controlled trials (RCTs) in rare diseases and scenarios where randomization to a control group is unethical or unfeasible. However, the validity of any decision making based on such comparative results depends heavily on the appropriateness and quality of the control arm data. FDA guidance lists multiple bias-generating concerns with the use of real-world controls arising from data quality and validity issues, which we frame as a data source ignorability assumption under the potential outcome framework. Hybrid control designs, RCTs with a full treatment group and a small underpowered control group supplemented with RW control data, have the potential to address some of these bias concerns. Statistical methods have been proposed for the analysis of hybrid designs and can adjust for potential violations of the data source ignorability assumption. A simulation study is presented to evaluate the operating characteristics of single and hybrid real-world control methods across the bias-generating scenarios mentioned in FDA guidance. Results suggest that certain methods can adjust for potential biases under these scenarios but may result in reduced efficiency through larger standard errors, or type I error inflation. Implications for the use of such methods and suggestions for additional work are discussed.

Suggested Citation

  • Mingyang Shan & Douglas Faries & Andy Dang & Xiang Zhang & Zhanglin Cui & Kristin M. Sheffield, 2022. "A Simulation-Based Evaluation of Statistical Methods for Hybrid Real-World Control Arms in Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 259-284, July.
  • Handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-022-09334-w
    DOI: 10.1007/s12561-022-09334-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-022-09334-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-022-09334-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    2. Franklin, Jessica M. & Schneeweiss, Sebastian & Polinski, Jennifer M. & Rassen, Jeremy A., 2014. "Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 219-226.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    4. Brian K Lee & Justin Lessler & Elizabeth A Stuart, 2011. "Weight Trimming and Propensity Score Weighting," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangang Liao & Charles Rohde, 2022. "Variance reduction in the inverse probability weighted estimators for the average treatment effect using the propensity score," Biometrics, The International Biometric Society, vol. 78(2), pages 660-667, June.
    2. Tenglong Li & Jordan Lawson, 2021. "A generalized bootstrap procedure of the standard error and confidence interval estimation for inverse probability of treatment weighting," Papers 2109.00171, arXiv.org.
    3. Paul B. Ellickson & Wreetabrata Kar & James C. Reeder, 2023. "Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions," Marketing Science, INFORMS, vol. 42(4), pages 704-728, July.
    4. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Wößmann, 2021. "Mentoring verbessert die Arbeitsmarktchancen von stark benachteiligten Jugendlichen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 74(02), pages 31-38, February.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    7. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    8. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    9. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    10. Bonesrønning, Hans & Finseraas, Henning & Hardoy, Ines & Iversen, Jon Marius Vaag & Nyhus, Ole Henning & Opheim, Vibeke & Salvanes, Kari Vea & Sandsør, Astrid Marie Jorde & Schøne, Pål, 2022. "Small-group instruction to improve student performance in mathematics in early grades: Results from a randomized field experiment," Journal of Public Economics, Elsevier, vol. 216(C).
    11. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    12. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    13. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    14. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    15. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    16. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    17. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    18. Suresh de Mel & David McKenzie & Christopher Woodruff, 2019. "Labor Drops: Experimental Evidence on the Return to Additional Labor in Microenterprises," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 202-235, January.
    19. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    20. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-022-09334-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.