IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v13y2021i2d10.1007_s12561-021-09302-w.html
   My bibliography  Save this article

Modeling Longitudinal Microbiome Compositional Data: A Two-Part Linear Mixed Model with Shared Random Effects

Author

Listed:
  • Yongli Han

    (National Cancer Institute)

  • Courtney Baker

    (University of North Carolina)

  • Emily Vogtmann

    (National Cancer Institute)

  • Xing Hua

    (National Cancer Institute
    Fred Hutchinson Cancer Research Center)

  • Jianxin Shi

    (National Cancer Institute)

  • Danping Liu

    (National Cancer Institute)

Abstract

Longitudinal microbiome studies have been widely used to unveil the dynamics in the complex host-microbial ecosystems. Modeling the longitudinal microbiome compositional data, which is semi-continuous in nature, is challenging in several aspects: the overabundance of zeros, the heavy skewness of non-zero values that are bounded in (0, 1), and the dependence between the binary and non-zero parts. To deal with these challenges, we first extended the work of Chen and Li [1] and proposed a two-part zero-inflated Beta regression model with shared random effects (ZIBR-SRE), which characterize the dependence between the binary and the continuous parts. Besides, the microbiome compositional data have unit-sum constraint, indicating the existence of negative correlations among taxa. As ZIBR-SRE models each taxon separately, it does not satisfy the sum-to-one constraint. We then proposed a two-part linear mixed model (TPLMM) with shared random effects to formulate the log-transformed standardized relative abundances rather than the original ones. Such transformation is called “additive logistic transformation”, initially developed for cross-sectional compositional data. We extended it to analyze the longitudinal microbiome compositions and showed that the unit-sum constraint can be automatically satisfied under the TPLMM framework. Model performances of TPLMM and ZIBR-SRE were compared with existing methods in simulation studies. Under settings adopted from real data, TPLMM had the best performance and is recommended for practical use. An oral microbiome application further showed that TPLMM and ZIBR-SRE estimated a strong correlation structure in the binary and the continuous parts, suggesting models without accounting for this dependence would lead to biased inferences.

Suggested Citation

  • Yongli Han & Courtney Baker & Emily Vogtmann & Xing Hua & Jianxin Shi & Danping Liu, 2021. "Modeling Longitudinal Microbiome Compositional Data: A Two-Part Linear Mixed Model with Shared Random Effects," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 243-266, July.
  • Handle: RePEc:spr:stabio:v:13:y:2021:i:2:d:10.1007_s12561-021-09302-w
    DOI: 10.1007/s12561-021-09302-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-021-09302-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-021-09302-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brandie D Wagner & Charles E Robertson & J Kirk Harris, 2011. "Application of Two-Part Statistics for Comparison of Sequence Variant Counts," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-8, May.
    2. Lawrence A. David & Corinne F. Maurice & Rachel N. Carmody & David B. Gootenberg & Julie E. Button & Benjamin E. Wolfe & Alisha V. Ling & A. Sloan Devlin & Yug Varma & Michael A. Fischbach & Sudha B. , 2014. "Diet rapidly and reproducibly alters the human gut microbiome," Nature, Nature, vol. 505(7484), pages 559-563, January.
    3. Ruth E. Ley & Peter J. Turnbaugh & Samuel Klein & Jeffrey I. Gordon, 2006. "Human gut microbes associated with obesity," Nature, Nature, vol. 444(7122), pages 1022-1023, December.
    4. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    5. Patricio S La Rosa & J Paul Brooks & Elena Deych & Edward L Boone & David J Edwards & Qin Wang & Erica Sodergren & George Weinstock & William D Shannon, 2012. "Hypothesis Testing and Power Calculations for Taxonomic-Based Human Microbiome Data," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah L Hagerty & Kent E Hutchison & Christopher A Lowry & Angela D Bryan, 2020. "An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    2. Zahraa Al Bander & Marloes Dekker Nitert & Aya Mousa & Negar Naderpoor, 2020. "The Gut Microbiota and Inflammation: An Overview," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
    3. Sean M Gibbons & Sean M Kearney & Chris S Smillie & Eric J Alm, 2017. "Two dynamic regimes in the human gut microbiome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    4. Qian Zhang & Lijuan Zhang & Yang Lyu & Yutao Shi & Liangyun Zhu & Min Zhang & Yuyan Zhao & Di Zhao & Lei Wang & Dan Yi & Yongqing Hou & Tao Wu, 2022. "Dietary supplementation of Lactobacillus zeae regulated the gut microbiome in piglets infected with enterotoxigenic Escherichia coli," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 67(1), pages 27-38.
    5. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    6. Gourieroux, Christian & Lu, Yang, 2019. "Least impulse response estimator for stress test exercises," Journal of Banking & Finance, Elsevier, vol. 103(C), pages 62-77.
    7. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    8. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    9. Harald Oberhofer & Michael Pfaffermayr, 2014. "Two-Part Models for Fractional Responses Defined as Ratios of Integers," Econometrics, MDPI, vol. 2(3), pages 1-22, September.
    10. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Kiran Konain & Sadia & Turfa Nadeem & Adeed Khan & Warda Iqbal & Arsalan & Amir Javed & Ruby Khan & Kainat Jamil & Kainat Jamil, 2018. "Importance of Probiotics in Gastrointestinal Tract," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(3), pages 128-143, March.
    12. Kenneth A. Wilson & Sudipta Bar & Eric B. Dammer & Enrique M. Carrera & Brian A. Hodge & Tyler A. U. Hilsabeck & Joanna Bons & George W. Brownridge & Jennifer N. Beck & Jacob Rose & Melia Granath-Pane, 2024. "OXR1 maintains the retromer to delay brain aging under dietary restriction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Jinji, Naoto & Zhang, Xingyuan & Haruna, Shoji, 2019. "Does a firm with higher Tobin’s q prefer foreign direct investment to foreign outsourcing?," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    14. Pirjo Wacklin & Harri Mäkivuokko & Noora Alakulppi & Janne Nikkilä & Heli Tenkanen & Jarkko Räbinä & Jukka Partanen & Kari Aranko & Jaana Mättö, 2011. "Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    15. Ricardo Ocaña-Riola & Carmen Pérez-Romero & Mª Isabel Ortega-Díaz & José Jesús Martín-Martín, 2021. "Multilevel Zero-One Inflated Beta Regression Model for the Analysis of the Relationship between Exogenous Health Variables and Technical Efficiency in the Spanish National Health System Hospitals," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    16. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    17. Carlos Rojas & Bernardo Riffo & Ernesto Guerra, 2023. "Word Retrieval After the 80s: Evidence From Specific and Multiple Words Naming Tasks," SAGE Open, , vol. 13(2), pages 21582440231, May.
    18. Frisha Abkar & Sajjad ur Rahman & Ahsan Naveed & Hira Rasheed & Syed Ashar Mehfooz, 2019. "Evaluation of Oral Microflora in Obese and Non- Obese Humans from District Faisalabad, Pakistan," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 10(1), pages 12-16, March.
    19. Mariana F. Fernández & Iris Reina-Pérez & Juan Manuel Astorga & Andrea Rodríguez-Carrillo & Julio Plaza-Díaz & Luis Fontana, 2018. "Breast Cancer and Its Relationship with the Microbiota," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    20. Ehsan Bahrami Samani & Elham Tabrizi, 2023. "Joint Linear Modeling of Mixed Data and Its Application to Email Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 175-209, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:13:y:2021:i:2:d:10.1007_s12561-021-09302-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.