IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v12y2020i1d10.1007_s12561-020-09270-7.html
   My bibliography  Save this article

A Mixture Model for Bivariate Interval-Censored Failure Times with Dependent Susceptibility

Author

Listed:
  • Shu Jiang

    (University of Waterloo)

  • Richard J. Cook

    (University of Waterloo)

Abstract

Interval-censored failure times arise when the status with respect to an event of interest is only determined at intermittent examination times. In settings where there exists a sub-population of individuals who are not susceptible to the event of interest, latent variable models accommodating a mixture of susceptible and nonsusceptible individuals are useful. We consider such models for the analysis of bivariate interval-censored failure time data with a model for bivariate binary susceptibility indicators and a copula model for correlated failure times given joint susceptibility. We develop likelihood, composite likelihood, and estimating function methods for model fitting and inference, and assess asymptotic-relative efficiency and finite sample performance. Extensions dealing with higher-dimensional responses and current status data are also described.

Suggested Citation

  • Shu Jiang & Richard J. Cook, 2020. "A Mixture Model for Bivariate Interval-Censored Failure Times with Dependent Susceptibility," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 37-62, April.
  • Handle: RePEc:spr:stabio:v:12:y:2020:i:1:d:10.1007_s12561-020-09270-7
    DOI: 10.1007/s12561-020-09270-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-020-09270-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-020-09270-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nilanjan Chatterjee & Joanna Shih, 2001. "A Bivariate Cure-Mixture Approach for Modeling Familial Association in Diseases," Biometrics, The International Biometric Society, vol. 57(3), pages 779-786, September.
    2. Tao Sun & Yi Liu & Richard J. Cook & Wei Chen & Ying Ding, 2019. "Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 546-568, July.
    3. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    4. Liuquan Sun & Lianming Wang & Jianguo Sun, 2006. "Estimation of the Association for Bivariate Interval‐censored Failure Time Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 637-649, December.
    5. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    6. K. F. Lam & Hongqi Xue, 2005. "A semiparametric regression cure model with current status data," Biometrika, Biometrika Trust, vol. 92(3), pages 573-586, September.
    7. Peng, Yingwei, 2003. "Fitting semiparametric cure models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 481-490, January.
    8. W. J. Braun & J. E. Stafford, 2016. "Multivariate density estimation for interval‐censored data with application to a forest fire modelling problem," Environmetrics, John Wiley & Sons, Ltd., vol. 27(6), pages 345-354, September.
    9. Rebecca A. Betensky & Jane C. Lindsey & Louise M. Ryan & M. P. Wand, 1999. "Local EM Estimation of the Hazard Function for Interval-Censored Data," Biometrics, The International Biometric Society, vol. 55(1), pages 238-245, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangya Mao & Richard J. Cook, 2023. "Spatial dependence modeling of latent susceptibility and time to joint damage in psoriatic arthritis," Biometrics, The International Biometric Society, vol. 79(3), pages 2605-2618, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    2. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    3. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    4. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    5. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    6. Peizhi Li & Yingwei Peng & Ping Jiang & Qingli Dong, 2020. "A support vector machine based semiparametric mixture cure model," Computational Statistics, Springer, vol. 35(3), pages 931-945, September.
    7. Edith Gray & Ann Evans & Jon Anderson & Rebecca Kippen, 2010. "Using Split-Population Models to Examine Predictors of the Probability and Timing of Parity Progression," European Journal of Population, Springer;European Association for Population Studies, vol. 26(3), pages 275-295, August.
    8. Ana López-Cheda & M. Amalia Jácome & Ricardo Cao, 2017. "Nonparametric latency estimation for mixture cure models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 353-376, June.
    9. Chen, Chyong-Mei & Lu, Tai-Fang C. & Hsu, Chao-Min, 2013. "Association estimation for clustered failure time data with a cure fraction," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 210-222.
    10. Luis E. Nieto‐Barajas & Guosheng Yin, 2008. "Bayesian Semiparametric Cure Rate Model with an Unknown Threshold," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 540-556, September.
    11. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    12. Guoqing Diao & Guosheng Yin, 2012. "A general transformation class of semiparametric cure rate frailty models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 959-989, October.
    13. Niu, Yi & Peng, Yingwei, 2014. "Marginal regression analysis of clustered failure time data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 129-142.
    14. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    15. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    17. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    18. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    19. Mengling Liu & Wenbin Lu & Yongzhao Shao, 2006. "Interval Mapping of Quantitative Trait Loci for Time-to-Event Data with the Proportional Hazards Mixture Cure Model," Biometrics, The International Biometric Society, vol. 62(4), pages 1053-1061, December.
    20. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:12:y:2020:i:1:d:10.1007_s12561-020-09270-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.