IDEAS home Printed from https://ideas.repec.org/a/spr/soinre/v156y2021i2d10.1007_s11205-020-02326-7.html
   My bibliography  Save this article

A Network-Based Indicator of Travelers Performativity on Instagram

Author

Listed:
  • Giuseppe Giordano

    (University of Salerno)

  • Ilaria Primerano

    (University of Salerno)

  • Pierluigi Vitale

    (University of Salerno)

Abstract

The spread of Internet and online social media has created a huge amount of data able to provide new insights to researchers in different disciplinary fields, but it also presents new challenges for data science. Data arising from online social networks can be naturally coded as relational data in affiliation and adjacency matrices, then analyzed with social network analysis. In this study, we apply an interdisciplinary approach (based on automatic visual content analysis, social network analysis, and exploratory statistical techniques) to define and derive a suitable indicator for characterizing places, along with the online activities of travelers, in terms of sharing images. We envisage a novel storytelling perspective where stories are related to places and the narrative activity is realized through posting images. Specifically, we use data extracted from an online social network (i.e., Instagram) to identify travelers’ paths among sites of interests. Starting from a large collection of pictures geolocalized in a pre-specified set of locations (i.e., five locations in the Campania region of Italy during the 2018 Christmas season), we use automatic alternative text to produce an ex-post taxonomy of images on the most recurrent themes emerging from pictures posted on Instagram. Quantitative measures defined on the co-occurrence of locations and the emerging themes are used to build a statistical indicator able to characterize paths among different locations as narrated from travelers’ posts. The proposed analysis, presented and discussed along with real data, can be useful for stakeholders interested in the fields of policy-making, communication design, and territory profiling strategies.

Suggested Citation

  • Giuseppe Giordano & Ilaria Primerano & Pierluigi Vitale, 2021. "A Network-Based Indicator of Travelers Performativity on Instagram," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 631-649, August.
  • Handle: RePEc:spr:soinre:v:156:y:2021:i:2:d:10.1007_s11205-020-02326-7
    DOI: 10.1007/s11205-020-02326-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11205-020-02326-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11205-020-02326-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Estela Marine-Roig, 2017. "Measuring Destination Image through Travel Reviews in Search Engines," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    2. Kawaljeet Kaur Kapoor & Kuttimani Tamilmani & Nripendra P. Rana & Pushp Patil & Yogesh K. Dwivedi & Sridhar Nerur, 2018. "Advances in Social Media Research: Past, Present and Future," Information Systems Frontiers, Springer, vol. 20(3), pages 531-558, June.
    3. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2017. "‘You will like it!’ using open data to predict tourists' response to a tourist attraction," Tourism Management, Elsevier, vol. 60(C), pages 430-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    2. Stefano Di Lauro & Aizhan Tursunbayeva & Gilda Antonelli & Marcello Martinez, 2021. "Organizational and Corporate Identity on Social Media: A Literature Review," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(4), pages 1-53, July.
    3. Irina Maiorescu & Mihaela Bucur & Bogdan Georgescu & Daniel Moise & Vasile Alecsandru Strat & Ion Daniel Zgură, 2020. "Social Media and IOT Wearables in Developing Marketing Strategies. Do SMEs Differ From Large Enterprises?," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    4. Rand Al-Dmour & Ola H. Alkhatib & Hani Al-Dmour & Eatedal Basheer Amin, 2023. "The Influence of Social Marketing Drives on Brand Loyalty via the Customer Satisfaction as a Mediating Factor in Travel and Tourism Offices," SAGE Open, , vol. 13(2), pages 21582440231, June.
    5. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    6. Gutiérrez-Nieto, Begoña & Serrano-Cinca, Carlos, 2019. "20 years of research in microfinance: An information management approach," International Journal of Information Management, Elsevier, vol. 47(C), pages 183-197.
    7. Raed S. Algharabat & Nripendra P. Rana, 0. "Social Commerce in Emerging Markets and its Impact on Online Community Engagement," Information Systems Frontiers, Springer, vol. 0, pages 1-22.
    8. Estela Marine-Roig & Eva Martin-Fuentes & Natalia Daries-Ramon, 2017. "User-Generated Social Media Events in Tourism," Sustainability, MDPI, vol. 9(12), pages 1-23, December.
    9. Saito, Taiga & Takahashi, Akihiko & Koide, Noriaki & Ichifuji, Yu, 2019. "Application of online booking data to hotel revenue management," International Journal of Information Management, Elsevier, vol. 46(C), pages 37-53.
    10. Anita Mendiratta & Shveta Singh & Surendra Singh Yadav & Arvind Mahajan, 2023. "Bibliometric and Topic Modeling Analysis of Corporate Social Irresponsibility," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 319-339, September.
    11. Cao, Xiongfei & Yu, Lingling, 2019. "Exploring the influence of excessive social media use at work: A three-dimension usage perspective," International Journal of Information Management, Elsevier, vol. 46(C), pages 83-92.
    12. Roman Lukyanenko & Andrea Wiggins & Holly K. Rosser, 0. "Citizen Science: An Information Quality Research Frontier," Information Systems Frontiers, Springer, vol. 0, pages 1-23.
    13. Srivastava, Abhishek & Bala, Pradip Kumar & Kumar, Bipul, 2020. "New perspectives on gray sheep behavior in E-commerce recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    14. Sreejesh, S. & Ghosh, Tathagata & Dwivedi, Yogesh K., 2021. "Moving beyond the content: The role of contextual cues in the effectiveness of gamification of advertising," Journal of Business Research, Elsevier, vol. 132(C), pages 88-101.
    15. Fatuma Namisango & Kyeong Kang & Ghassan Beydoun, 2022. "How the Structures Provided by Social Media Enable Collaborative Outcomes: A Study of Service Co-creation in Nonprofits," Information Systems Frontiers, Springer, vol. 24(2), pages 517-535, April.
    16. Wang, Xuequn & Lin, Xiaolin & Spencer, Marilyn K., 2019. "Exploring the effects of extrinsic motivation on consumer behaviors in social commerce: Revealing consumers’ perceptions of social commerce benefits," International Journal of Information Management, Elsevier, vol. 45(C), pages 163-175.
    17. Jae Yeon Kim & Jaeung Sim & Daegon Cho, 2023. "Identity and Status: When Counterspeech Increases Hate Speech Reporting and Why," Information Systems Frontiers, Springer, vol. 25(5), pages 1683-1694, October.
    18. A Fronzetti Colladon & B Guardabascio & R Innarella, 2021. "Using social network and semantic analysis to analyze online travel forums and forecast tourism demand," Papers 2105.07727, arXiv.org.
    19. Abhinav Kumar & Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana, 2022. "A deep multi-modal neural network for informative Twitter content classification during emergencies," Annals of Operations Research, Springer, vol. 319(1), pages 791-822, December.
    20. Krishen, Anjala S. & Dwivedi, Yogesh K. & Bindu, N. & Kumar, K. Satheesh, 2021. "A broad overview of interactive digital marketing: A bibliometric network analysis," Journal of Business Research, Elsevier, vol. 131(C), pages 183-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:soinre:v:156:y:2021:i:2:d:10.1007_s11205-020-02326-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.