IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v47y2016i3d10.1007_s00355-016-0982-z.html
   My bibliography  Save this article

Proportional Borda allocations

Author

Listed:
  • Andreas Darmann

    (University of Graz)

  • Christian Klamler

    (University of Graz)

Abstract

In this paper we study the allocation of indivisible items among a group of agents, a problem which has received increased attention in recent years, especially in areas such as computer science and economics. A major fairness property in the fair division literature is proportionality, which is satisfied whenever each of the n agents receives at least $$\frac{1}{n}$$ 1 n of the value attached to the whole set of items. To simplify the determination of values of (sets of) items from ordinal rankings of the items, we use the Borda rule, a concept used extensively and well-known in voting theory. Although, in general, proportionality cannot be guaranteed, we show that, under certain assumptions, proportional allocations of indivisible items are possible and finding such allocations is computationally easy.

Suggested Citation

  • Andreas Darmann & Christian Klamler, 2016. "Proportional Borda allocations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(3), pages 543-558, October.
  • Handle: RePEc:spr:sochwe:v:47:y:2016:i:3:d:10.1007_s00355-016-0982-z
    DOI: 10.1007/s00355-016-0982-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-016-0982-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-016-0982-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Budish & Estelle Cantillon, 2012. "The Multi-unit Assignment Problem: Theory and Evidence from Course Allocation at Harvard," American Economic Review, American Economic Association, vol. 102(5), pages 2237-2271, August.
    2. Marc Fleurbaey & Peter Hammond, 2004. "Interpersonally comparable utility," Post-Print hal-00247066, HAL.
    3. Steven Brams & D. Kilgour & Christian Klamler, 2012. "The undercut procedure: an algorithm for the envy-free division of indivisible items," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 615-631, July.
    4. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    5. Sylvain Bouveret & Yann Chevaleyre & Nicolas Maudet, 2016. "Fair Division of Indivisible Goods," Post-Print hal-01527121, HAL.
    6. Eric Budish, 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1061-1103.
    7. Dorothea Herreiner & Clemens Puppe, 2002. "A simple procedure for finding equitable allocations of indivisible goods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(2), pages 415-430.
    8. Steven J. Brams & Daniel L. King, 2005. "Efficient Fair Division," Rationality and Society, , vol. 17(4), pages 387-421, November.
    9. Hylland, Aanund & Zeckhauser, Richard, 1979. "The Efficient Allocation of Individuals to Positions," Journal of Political Economy, University of Chicago Press, vol. 87(2), pages 293-314, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kilgour, D. Marc & Vetschera, Rudolf, 2018. "Two-player fair division of indivisible items: Comparison of algorithms," European Journal of Operational Research, Elsevier, vol. 271(2), pages 620-631.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2017. "Maximin Envy-Free Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 26(1), pages 115-131, January.
    2. Fedor Sandomirskiy & Erel Segal-Halevi, 2019. "Efficient Fair Division with Minimal Sharing," Papers 1908.01669, arXiv.org, revised Apr 2022.
    3. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2014. "An algorithm for the proportional division of indivisible items," MPRA Paper 56587, University Library of Munich, Germany.
    4. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    5. Miralles, Antonio & Pycia, Marek, 2021. "Foundations of pseudomarkets: Walrasian equilibria for discrete resources," Journal of Economic Theory, Elsevier, vol. 196(C).
    6. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    7. Ortega, Josué, 2020. "Multi-unit assignment under dichotomous preferences," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 15-24.
    8. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    9. Eve Ramaekers, 2013. "Fair allocation of indivisible goods: the two-agent case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 359-380, July.
    10. Nguyen, Thành & Peivandi, Ahmad & Vohra, Rakesh, 2016. "Assignment problems with complementarities," Journal of Economic Theory, Elsevier, vol. 165(C), pages 209-241.
    11. Chatterji, Shurojit & Liu, Peng, 2020. "Random assignments of bundles," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 15-30.
    12. Georgios Gerasimou, 2019. "Simple Preference Intensity Comparisons," Discussion Paper Series, School of Economics and Finance 201905, School of Economics and Finance, University of St Andrews, revised 27 Apr 2020.
    13. Manurangsi, Pasin & Suksompong, Warut, 2017. "Asymptotic existence of fair divisions for groups," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 100-108.
    14. Rudolf Vetschera & D. Marc Kilgour, 2013. "Strategic Behavior in Contested-Pile Methods for Fair Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 22(2), pages 299-319, March.
    15. Haris Aziz, 2016. "A generalization of the AL method for fair allocation of indivisible objects," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 307-324, October.
    16. Gian Caspari, 2023. "A market design solution to a multi-category housing allocation problem," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 8(1), pages 75-96, December.
    17. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2022. "Two-Person Fair Division of Indivisible Items when Envy-Freeness is Impossible," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
    18. Marta Boczoń & Alistair J. Wilson, 2023. "Goals, Constraints, and Transparently Fair Assignments: A Field Study of Randomization Design in the UEFA Champions League," Management Science, INFORMS, vol. 69(6), pages 3474-3491, June.
    19. Anna Bogomolnaia & Hervé Moulin & Fedor Sandomirskiy & Elena Yanovskaya, 2017. "Competitive Division of a Mixed Manna," Econometrica, Econometric Society, vol. 85(6), pages 1847-1871, November.
    20. Aygün, Orhan & Turhan, Bertan, 2021. "How to De-reserve Reserves," ISU General Staff Papers 202103100800001123, Iowa State University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:47:y:2016:i:3:d:10.1007_s00355-016-0982-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.