IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i2d10.1007_s43069-023-00215-6.html
   My bibliography  Save this article

Derivation of Coordinate Descent Algorithms from Optimal Control Theory

Author

Listed:
  • Isaac M. Ross

    (Naval Postgraduate School)

Abstract

Recently, it was posited that disparate optimization algorithms may be coalesced in terms of a central source emanating from optimal control theory. Here we further this proposition by showing how coordinate descent algorithms may be derived from this emerging new principle. In particular, we show that basic coordinate descent algorithms can be derived using a maximum principle and a collection of max functions as “control” Lyapunov functions. The convergence of the resulting coordinate descent algorithms is thus connected to the controlled dissipation of their corresponding Lyapunov functions. The operational metric for the search vector in all cases is given by the Hessian of the convex objective function.

Suggested Citation

  • Isaac M. Ross, 2023. "Derivation of Coordinate Descent Algorithms from Optimal Control Theory," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00215-6
    DOI: 10.1007/s43069-023-00215-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00215-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00215-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. Goh, 1997. "Algorithms for Unconstrained Optimization Problems via Control Theory," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 581-604, March.
    2. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iasson Karafyllis, 2014. "Feedback Stabilization Methods for the Solution of Nonlinear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 783-806, June.
    2. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    4. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    5. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    6. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    7. Sjur Didrik Flåm, 2020. "Emergence of price-taking Behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 847-870, October.
    8. Chenxi Chen & Yunmei Chen & Yuyuan Ouyang & Eduardo Pasiliao, 2018. "Stochastic Accelerated Alternating Direction Method of Multipliers with Importance Sampling," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 676-695, November.
    9. Reza Eghbali & Maryam Fazel, 2017. "Decomposable norm minimization with proximal-gradient homotopy algorithm," Computational Optimization and Applications, Springer, vol. 66(2), pages 345-381, March.
    10. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    11. ARAVENA, Ignacio & PAPAVASILIOU, Anthony, 2016. "An Asynchronous Distributed Algorithm for solving Stochastic Unit Commitment," LIDAM Discussion Papers CORE 2016038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    13. Ron Shefi & Marc Teboulle, 2016. "On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 27-46, February.
    14. Mareček, Jakub & Richtárik, Peter & Takáč, Martin, 2017. "Matrix completion under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 256(1), pages 35-43.
    15. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    16. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    17. Tao Sun & Yuejiao Sun & Yangyang Xu & Wotao Yin, 2020. "Markov chain block coordinate descent," Computational Optimization and Applications, Springer, vol. 75(1), pages 35-61, January.
    18. Yangyang Xu & Shuzhong Zhang, 2018. "Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 91-128, May.
    19. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    20. Khan, Mohd Shariq & I.A. Karimi, & Bahadori, Alireza & Lee, Moonyong, 2015. "Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 89(C), pages 757-767.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00215-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.