IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v3y2022i3d10.1007_s43069-022-00159-3.html
   My bibliography  Save this article

Controlling Conditional Expectations by Zero-Determinant Strategies

Author

Listed:
  • Masahiko Ueda

    (Yamaguchi University)

Abstract

Zero-determinant strategies are memory-one strategies in repeated games which unilaterally enforce linear relations between expected payoffs of players. Recently, the concept of zero-determinant strategies was extended to the class of memory-n strategies with $$n\ge 1$$ n ≥ 1 , which enables more complicated control of payoffs by one player. However, what we can do by memory-n zero-determinant strategies is still not clear. Here, we show that memory-n zero-determinant strategies in repeated games can be used to control conditional expectations of payoffs. Equivalently, they can be used to control expected payoffs in biased ensembles, where a history of action profiles with large value of bias function is more weighted. Controlling conditional expectations of payoffs is useful for strengthening zero-determinant strategies, because players can choose conditions in such a way that only unfavorable action profiles to one player are contained in the conditions. We provide several examples of memory-n zero-determinant strategies in the repeated prisoner’s dilemma game. We also explain that a deformed version of zero-determinant strategies is easily extended to the memory-n case.

Suggested Citation

  • Masahiko Ueda, 2022. "Controlling Conditional Expectations by Zero-Determinant Strategies," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
  • Handle: RePEc:spr:snopef:v:3:y:2022:i:3:d:10.1007_s43069-022-00159-3
    DOI: 10.1007/s43069-022-00159-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-022-00159-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-022-00159-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duersch, Peter & Oechssler, Jörg & Schipper, Burkhard C., 2012. "Unbeatable imitation," Games and Economic Behavior, Elsevier, vol. 76(1), pages 88-96.
    2. James W. Friedman, 1971. "A Non-cooperative Equilibrium for Supergames," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(1), pages 1-12.
    3. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    4. repec:cla:levarc:786969000000001297 is not listed on IDEAS
    5. Masahiko Ueda & Toshiyuki Tanaka, 2020. "Linear algebraic structure of zero-determinant strategies in repeated games," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-13, April.
    6. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    7. Hilbe, Christian & Traulsen, Arne & Sigmund, Karl, 2015. "Partners or rivals? Strategies for the iterated prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 92(C), pages 41-52.
    8. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    9. Jin-Li Guo, 2014. "Zero-determinant strategies in iterated multi-strategy games," Papers 1409.1786, arXiv.org, revised Sep 2014.
    10. Zhijian Wang & Yanran Zhou & Jaimie W. Lien & Jie Zheng & Bin Xu, 2016. "Extortion Can Outperform Generosity in the Iterated Prisoners' Dilemma," Levine's Bibliography 786969000000001297, UCLA Department of Economics.
    11. Christian Hilbe & Torsten Röhl & Manfred Milinski, 2014. "Extortion subdues human players but is finally punished in the prisoner’s dilemma," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    12. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    13. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
    14. McAvoy, Alex & Hauert, Christoph, 2017. "Autocratic strategies for alternating games," Theoretical Population Biology, Elsevier, vol. 113(C), pages 13-22.
    15. Usui, Yuki & Ueda, Masahiko, 2021. "Symmetric equilibrium of multi-agent reinforcement learning in repeated prisoner’s dilemma," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    16. Zhijian Wang & Yanran Zhou & Jaimie W. Lien & Jie Zheng & Bin Xu, 2016. "Extortion can outperform generosity in the iterated prisoner’s dilemma," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    2. Taha, Mohammad A. & Ghoneim, Ayman, 2021. "Zero-determinant strategies in infinitely repeated three-player prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Horaguchi, Haruo, 1996. "The role of information processing cost as the foundation of bounded rationality in game theory," Economics Letters, Elsevier, vol. 51(3), pages 287-294, June.
    4. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    5. Yuval Salant & Jörg L. Spenkuch, 2021. "Complexity and Choice," CESifo Working Paper Series 9239, CESifo.
    6. Spiegler, Ran, 2005. "Testing threats in repeated games," Journal of Economic Theory, Elsevier, vol. 121(2), pages 214-235, April.
    7. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    8. Kang, Kai & Tian, Jinyan & Zhang, Boyu, 2024. "Cooperation and control in asymmetric repeated games," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    9. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    10. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    11. Masahiko Ueda & Toshiyuki Tanaka, 2020. "Linear algebraic structure of zero-determinant strategies in repeated games," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-13, April.
    12. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    13. Gilboa Itzhak & Schmeidler David, 1994. "Infinite Histories and Steady Orbits in Repeated Games," Games and Economic Behavior, Elsevier, vol. 6(3), pages 370-399, May.
    14. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    15. Hamid Sabourian & Jihong Lee, 2004. "Complexity and Efficiency in Repeated Games with Negotiation," Econometric Society 2004 Far Eastern Meetings 401, Econometric Society.
    16. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.
    17. Beal, Sylvain & Querou, Nicolas, 2007. "Bounded rationality and repeated network formation," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 71-89, July.
    18. Monte, Daniel, 2013. "Bounded memory and permanent reputations," Journal of Mathematical Economics, Elsevier, vol. 49(5), pages 345-354.
    19. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    20. repec:dau:papers:123456789/6127 is not listed on IDEAS
    21. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:3:y:2022:i:3:d:10.1007_s43069-022-00159-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.