Prognose von Insolvenzwahrscheinlichkeiten mit Hilfe logistischer neuronaler Netzwerke
Author
Abstract
Suggested Citation
DOI: 10.1007/BF03371539
Download full text from publisher
References listed on IDEAS
- Anders, Ulrich & Korn, Olaf, 1996. "Model selection in neural networks," ZEW Discussion Papers 96-21, ZEW - Leibniz Centre for European Economic Research.
- Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Bucci, 2020.
"Realized Volatility Forecasting with Neural Networks,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
- Anoop S. KUMAR & Bandi KAMAIAH, 2016. "Efficiency, non-linearity and chaos: evidences from BRICS foreign exchange markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(606), S), pages 103-118, Spring.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
- Chen, Gong & Fricke, Hartmut & Okhrin, Ostap & Rosenow, Judith, 2024. "Flight delay propagation inference in air transport networks using the multilayer perceptron," Journal of Air Transport Management, Elsevier, vol. 114(C).
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
- You, Zhongyuan & Goodwin, Barry K. & Guney, Selin, 2023. "A semi-parametric study on dynamic linkages among international real interest rates," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 215-229.
- Becker, R. & Hurn, A.S., 2004. "Using discrete-time techniques to test continuous-time models for nonlinearity in drift," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 121-131.
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Shintani, Mototsugu, 2005.
"Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
- Mototsugu Shintani, 2003. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Vanderbilt University Department of Economics Working Papers 0322, Vanderbilt University Department of Economics, revised Apr 2004.
- Mototsugu Shintani, 2010. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Levine's Working Paper Archive 506439000000000168, David K. Levine.
- Raimundo Soto, "undated". "Nonlinearities in the Demand for money: A Neural Network Approach," ILADES-UAH Working Papers inv107, Universidad Alberto Hurtado/School of Economics and Business.
- Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014.
"A nonlinear panel data model of cross-sectional dependence,"
Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
- Dr. James Mitchell, 2010. "A Nonlinear Panel Data Model of Cross-sectional Dependence," National Institute of Economic and Social Research (NIESR) Discussion Papers 370, National Institute of Economic and Social Research.
- James Mitchell & George Kapetanios & Yongcheol Shin, 2012. "A Nonlinear Panel Data Model of Cross-Sectional Dependence," Discussion Papers in Economics 12/01, Division of Economics, School of Business, University of Leicester.
- Stan Hurn & Ralf Becker, 2009.
"Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity,"
Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
- Stan Hurn, 2004. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Econometric Society 2004 Australasian Meetings 348, Econometric Society.
- Stan Hurn & Ralf Becker, 2006. "Testing for nonlinearity in mean in the presence of heteroskedasticity," Stan Hurn Discussion Papers 2006-02, School of Economics and Finance, Queensland University of Technology.
- Lingaraj Mallick & Smruti Ranjan Behera & Mita Bhattacharya, 2024. "Impact of Exchange Rate on Trade Balance of India: Evidence from Threshold Cointegration with Asymmetric Error Correction Approach," Foreign Trade Review, , vol. 59(2), pages 279-308, May.
- Dagum, Estela Bee & Giannerini, Simone, 2006. "A critical investigation on detrending procedures for non-linear processes," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 175-191, March.
- Tea Šestanović & Josip Arnerić, 2021. "Can Recurrent Neural Networks Predict Inflation in Euro Zone as Good as Professional Forecasters?," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
- Psaradakis Zacharias & Spagnolo Nicola, 2002. "Power Properties of Nonlinearity Tests for Time Series with Markov Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-16, November.
- Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
- Valerie Herzberg & George Kapetanios & Simon Price, 2003. "Import prices and exchange rate pass-through: theory and evidence from the United Kingdom," Bank of England working papers 182, Bank of England.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:50:y:1998:i:10:d:10.1007_bf03371539. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.