IDEAS home Printed from https://ideas.repec.org/a/spr/sjecst/v160y2024i1d10.1186_s41937-024-00131-4.html
   My bibliography  Save this article

An introduction to causal discovery

Author

Listed:
  • Martin Huber

    (University of Fribourg)

Abstract

In social sciences and economics, causal inference traditionally focuses on assessing the impact of predefined treatments (or interventions) on predefined outcomes, such as the effect of education programs on earnings. Causal discovery, in contrast, aims to uncover causal relationships among multiple variables in a data-driven manner, by investigating statistical associations rather than relying on predefined causal structures. This approach, more common in computer science, seeks to understand causality in an entire system of variables, which can be visualized by causal graphs. This survey provides an introduction to key concepts, algorithms, and applications of causal discovery from the perspectives of economics and social sciences. It covers fundamental concepts like d-separation, causal faithfulness, and Markov equivalence, sketches various algorithms for causal discovery and discusses the back-door and front-door criteria for identifying causal effects. The survey concludes with more specific examples of causal discovery, e.g., for learning all variables that directly affect an outcome of interest and/or testing identification of causal effects in observational data.

Suggested Citation

  • Martin Huber, 2024. "An introduction to causal discovery," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 160(1), pages 1-16, December.
  • Handle: RePEc:spr:sjecst:v:160:y:2024:i:1:d:10.1186_s41937-024-00131-4
    DOI: 10.1186/s41937-024-00131-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41937-024-00131-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s41937-024-00131-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjecst:v:160:y:2024:i:1:d:10.1186_s41937-024-00131-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.