IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v22y2019i3d10.1007_s11203-018-09195-5.html
   My bibliography  Save this article

Estimation of the lead–lag parameter between two stochastic processes driven by fractional Brownian motions

Author

Listed:
  • Kohei Chiba

    (The University of Tokyo)

Abstract

In this paper, we consider the problem of estimating the lead–lag parameter between two stochastic processes driven by fractional Brownian motions (fBMs) of the Hurst parameter greater than 1/2. First we propose a lead–lag model between two stochastic processes involving fBMs, and then construct a consistent estimator of the lead–lag parameter with possible convergence rate. Our estimator has the following two features. Firstly, we can construct the lead–lag estimator without using the Hurst parameters of the underlying fBMs. Secondly, our estimator can deal with some non-synchronous and irregular observations. We explicitly calculate possible convergence rate when the observation times are (1) synchronous and equidistant, and (2) given by the Poisson sampling scheme. We also present numerical simulations of our results using the R package YUIMA.

Suggested Citation

  • Kohei Chiba, 2019. "Estimation of the lead–lag parameter between two stochastic processes driven by fractional Brownian motions," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 323-357, October.
  • Handle: RePEc:spr:sistpr:v:22:y:2019:i:3:d:10.1007_s11203-018-09195-5
    DOI: 10.1007/s11203-018-09195-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-018-09195-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-018-09195-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaki Hayashi & Nakahiro Yoshida, 2008. "Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 367-406, June.
    2. Robert, Christian Y. & Rosenbaum, Mathieu, 2010. "On the limiting spectral distribution of the covariance matrices of time-lagged processes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2434-2451, November.
    3. Nualart, David & Ouknine, Youssef, 2002. "Regularization of differential equations by fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 103-116, November.
    4. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    5. Takaki Hayashi & Shigeo Kusuoka, 2008. "Consistent estimation of covariation under nonsynchronicity," Statistical Inference for Stochastic Processes, Springer, vol. 11(1), pages 93-106, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hayashi, Takaki & Koike, Yuta, 2019. "No arbitrage and lead–lag relationships," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
    2. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    3. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    4. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    5. Ole Martin & Mathias Vetter, 2019. "Laws of large numbers for Hayashi–Yoshida-type functionals," Finance and Stochastics, Springer, vol. 23(3), pages 451-500, July.
    6. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    7. Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.
    8. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    9. Takaki Hayashi & Yuta Koike, 2017. "No arbitrage and lead-lag relationships," Papers 1712.09854, arXiv.org.
    10. Misaki, Hiroumi & Kunitomo, Naoto, 2015. "On robust properties of the SIML estimation of volatility under micro-market noise and random sampling," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 265-281.
    11. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    12. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    13. Naoto Kunitomo & Hiroumi Misaki, 2013. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Micro-market noise and Random Sampling," CIRJE F-Series CIRJE-F-893, CIRJE, Faculty of Economics, University of Tokyo.
    14. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    15. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
    16. Gupta, Kartikay & Chatterjee, Niladri, 2020. "Selecting stock pairs for pairs trading while incorporating lead–lag relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    18. Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
    19. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
    20. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:22:y:2019:i:3:d:10.1007_s11203-018-09195-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.