IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v20y2017i3d10.1007_s11203-016-9146-0.html
   My bibliography  Save this article

Moment convergence of Z-estimators

Author

Listed:
  • Ilia Negri

    (University of Bergamo)

  • Yoichi Nishiyama

    (Waseda University)

Abstract

The problem to establish the asymptotic distribution of statistical estimators as well as the moment convergence of such estimators has been recognized as an important issue in advanced theories of statistics. This problem has been deeply studied for M-estimators for a wide range of models by many authors. The purpose of this paper is to present an alternative and apparently simple theory to derive the moment convergence of Z-estimators. In the proposed approach the cases of parameters with different rate of convergence can be treated easily and smoothly and any large deviation type inequalities necessary for the same result for M-estimators do not appear in this approach. Applications to the model of i.i.d. observation, Cox’s regression model as well as some diffusion process are discussed.

Suggested Citation

  • Ilia Negri & Yoichi Nishiyama, 2017. "Moment convergence of Z-estimators," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 387-397, October.
  • Handle: RePEc:spr:sistpr:v:20:y:2017:i:3:d:10.1007_s11203-016-9146-0
    DOI: 10.1007/s11203-016-9146-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-016-9146-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-016-9146-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    2. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haruhiko Inatsugu & Nakahiro Yoshida, 2021. "Global jump filters and quasi-likelihood analysis for volatility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 555-598, June.
    2. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
    3. Shoichi Eguchi & Hiroki Masuda, 2019. "Data driven time scale in Gaussian quasi-likelihood inference," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 383-430, October.
    4. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    5. Jean Jacod & Michael Sørensen, 2018. "A review of asymptotic theory of estimating functions," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 415-434, July.
    6. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    7. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.
    8. Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
    9. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2022. "Adaptive tests for parameter changes in ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 397-430, July.
    10. Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
    11. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    12. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.
    13. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    14. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    15. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
    16. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    17. Yusuke Shimizu, 2017. "Moment convergence of regularized least-squares estimator for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1141-1154, October.
    18. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
    19. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
    20. Masatoshi Goda, 2023. "Sparse estimation for generalized exponential marked Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 139-169, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:20:y:2017:i:3:d:10.1007_s11203-016-9146-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.