IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v13y2010i3p231-248.html
   My bibliography  Save this article

Statistical estimation for reflected skew processes

Author

Listed:
  • Olivier Bardou
  • Miguel Martinez

Abstract

No abstract is available for this item.

Suggested Citation

  • Olivier Bardou & Miguel Martinez, 2010. "Statistical estimation for reflected skew processes," Statistical Inference for Stochastic Processes, Springer, vol. 13(3), pages 231-248, October.
  • Handle: RePEc:spr:sistpr:v:13:y:2010:i:3:p:231-248
    DOI: 10.1007/s11203-010-9047-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-010-9047-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-010-9047-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurent Bordes & Céline Delmas & Pierre Vandekerkhove, 2006. "Semiparametric Estimation of a Two‐component Mixture Model where One Component is known," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 733-752, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Lejay & Ernesto Mordecki & Soledad Torres, 2014. "Is a Brownian Motion Skew?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 346-364, June.
    2. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    3. Yizhou Bai & Yongjin Wang & Haoyan Zhang & Xiaoyang Zhuo, 2022. "Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 479-527, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    2. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2016. "Non-parametric estimation of finite mixtures from repeated measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 211-229, January.
    3. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    4. repec:spo:wpmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    5. Rostyslav Maiboroda & Olena Sugakova, 2012. "Nonparametric density estimation for symmetric distributions by contaminated data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 109-126, January.
    6. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    7. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
    8. Marc Henry & Koen Jochmans & Bernard Salanié, 2014. "Inference on Mixtures Under Tail Restrictions," SciencePo Working papers Main hal-01053810, HAL.
    9. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    10. Seo, Byungtae, 2017. "The doubly smoothed maximum likelihood estimation for location-shifted semiparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 27-39.
    11. Gadat, Sébastien & Marteau, Clément & Maugis, Cathy, 2016. "Parameter recovery in two-component contamination mixtures: the L2 strategy," TSE Working Papers 16-653, Toulouse School of Economics (TSE), revised Feb 2018.
    12. Jiali Zheng & Xiyang Wang, 2022. "Estimation for a Class of Semiparametric Pareto Mixture Densities," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 609-627, August.
    13. Rohit Kumar Patra & Bodhisattva Sen, 2016. "Estimation of a two-component mixture model with applications to multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 869-893, September.
    14. Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
    15. Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.
    16. Cristina Butucea & Pierre Vandekerkhove, 2014. "Semiparametric Mixtures of Symmetric Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 227-239, March.
    17. Domma, Filippo & Condino, Francesca, 2014. "A new class of distribution functions for lifetime data," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 36-45.
    18. Laurent Bordes & Didier Chauveau, 2016. "Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data," Computational Statistics, Springer, vol. 31(4), pages 1513-1538, December.
    19. Bordes, Laurent & Chauveau, Didier & Vandekerkhove, Pierre, 2007. "A stochastic EM algorithm for a semiparametric mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5429-5443, July.
    20. Balabdaoui, Fadoua & Butucea, Cristina, 2014. "On location mixtures with Pólya frequency components," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 144-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:13:y:2010:i:3:p:231-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.