IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v98y2014i3d10.1007_s11192-013-1164-8.html
   My bibliography  Save this article

Google Scholar Metrics evolution: an analysis according to languages

Author

Listed:
  • Enrique Orduña-Malea

    (Universidad Politécnica de Valencia)

  • Emilio Delgado López-Cózar

    (Universidad de Granada)

Abstract

In November 2012 the Google Scholar Metrics (GSM) journal rankings were updated, making it possible to compare bibliometric indicators in the ten languages indexed—and their stability—with the April 2012 version. The h-index and h-5 median of 1,000 journals were analysed, comparing their averages, maximum and minimum values and the correlation coefficient within rankings. The bibliometric figures grew significantly. In just seven and a half months the h-index of the journals increased by 15 % and the median h-index by 17 %. This growth was observed for all the bibliometric indicators analysed and for practically every journal. However, we found significant differences in growth rates depending on the language in which the journal is published. Moreover, the journal rankings seem to be stable between April and November, reinforcing the credibility of the data held by Google Scholar and the reliability of the GSM journal rankings, despite the uncontrolled growth of Google Scholar. Based on the findings of this study we suggest, firstly, that Google should upgrade its rankings at least semi-annually and, secondly, that the results should be displayed in each ranking proportionally to the number of journals indexed by language.

Suggested Citation

  • Enrique Orduña-Malea & Emilio Delgado López-Cózar, 2014. "Google Scholar Metrics evolution: an analysis according to languages," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2353-2367, March.
  • Handle: RePEc:spr:scient:v:98:y:2014:i:3:d:10.1007_s11192-013-1164-8
    DOI: 10.1007/s11192-013-1164-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1164-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1164-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kayvan Kousha & Mike Thelwall, 2007. "Google Scholar citations and Google Web/URL citations: A multi‐discipline exploratory analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1055-1065, May.
    2. Isidro F. Aguillo, 2012. "Is Google Scholar useful for bibliometrics? A webometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 343-351, May.
    3. Costas, Rodrigo & Bordons, María, 2007. "The h-index: Advantages, limitations and its relation with other bibliometric indicators at the micro level," Journal of Informetrics, Elsevier, vol. 1(3), pages 193-203.
    4. Nigel Payne & Mike Thelwall, 2007. "A longitudinal study of academic webs: Growth and stabilisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(3), pages 523-539, June.
    5. Anne-Wil Harzing, 2013. "A preliminary test of Google Scholar as a source for citation data: a longitudinal study of Nobel prize winners," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1057-1075, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris Fields, 2015. "Close to the edge: co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991–2010, to cross-disciplinary brokers," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 267-299, April.
    2. Martin-Martin, Alberto & Orduna-Malea, Enrique & Harzing, Anne-Wil & Delgado López-Cózar, Emilio, 2017. "Can we use Google Scholar to identify highly-cited documents?," Journal of Informetrics, Elsevier, vol. 11(1), pages 152-163.
    3. Sergio Copiello, 2019. "The open access citation premium may depend on the openness and inclusiveness of the indexing database, but the relationship is controversial because it is ambiguous where the open access boundary lie," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 995-1018, November.
    4. Cristòfol Rovira & Lluís Codina & Frederic Guerrero-Solé & Carlos Lopezosa, 2019. "Ranking by Relevance and Citation Counts, a Comparative Study: Google Scholar, Microsoft Academic, WoS and Scopus," Future Internet, MDPI, vol. 11(9), pages 1-21, September.
    5. Cristòfol Rovira & Lluís Codina & Carlos Lopezosa, 2021. "Language Bias in the Google Scholar Ranking Algorithm," Future Internet, MDPI, vol. 13(2), pages 1-17, January.
    6. Enrique Orduna-Malea & Juan M. Ayllón & Alberto Martín-Martín & Emilio Delgado López-Cózar, 2015. "Methods for estimating the size of Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 931-949, September.
    7. Miguel A. García-Pérez, 2015. "Online supplemental information: a sizeable black hole for citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1655-1659, February.
    8. Enrique Orduna-Malea & Selenay Aytac & Clara Y. Tran, 2019. "Universities through the eyes of bibliographic databases: a retroactive growth comparison of Google Scholar, Scopus and Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 433-450, October.
    9. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    10. Ma, Chao & Li, Yiwei & Guo, Feng & Si, Kao, 2019. "The citation trap: Papers published at year-end receive systematically fewer citations," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 667-687.
    11. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    12. Waltman, L. & van Eck, N.J.P., 2009. "A Taxonomy of Bibliometric Performance Indicators Based on the Property of Consistency," ERIM Report Series Research in Management ERS-2009-014-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    14. Pantea Kamrani & Isabelle Dorsch & Wolfgang G. Stock, 2021. "Do researchers know what the h-index is? And how do they estimate its importance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5489-5508, July.
    15. Hoyeop Lee & Jueun Kwak & Min Song & Chang Ouk Kim, 2015. "Coherence analysis of research and education using topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1119-1137, February.
    16. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Alison M. J. Buchan & Eva Jurczyk & Ruth Isserlin & Gary D. Bader, 2016. "Global neuroscience and mental health research: a bibliometrics case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 515-531, October.
    18. Nianhang Xu & Winnie P. H. Poon & Kam C. Chan, 2014. "Contributing Institutions and Authors in International Business Research: A Quality-Based Assessment," Management International Review, Springer, vol. 54(5), pages 735-755, October.
    19. Wilder Quintero-Quintero & Ana Beatriz Blanco-Ariza & Manuel Alfonso Garzón-Castrillón, 2021. "Intellectual Capital: A Review and Bibliometric Analysis," Publications, MDPI, vol. 9(4), pages 1-23, October.
    20. Simone Belli & Carlos Gonzalo-Penela, 2020. "Science, research, and innovation infospheres in Google results of the Ibero-American countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 635-653, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:98:y:2014:i:3:d:10.1007_s11192-013-1164-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.