IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v121y2019i1d10.1007_s11192-019-03208-7.html
   My bibliography  Save this article

Universities through the eyes of bibliographic databases: a retroactive growth comparison of Google Scholar, Scopus and Web of Science

Author

Listed:
  • Enrique Orduna-Malea

    (Universitat Politècnica de València)

  • Selenay Aytac

    (Long Island University)

  • Clara Y. Tran

    (Stony Brook University)

Abstract

The purpose of this study is to ascertain the suitability of GS’s url-based method as a valid approximation of universities’ academic output measures, taking into account three aspects (retroactive growth, correlation, and coverage). To do this, a set of 100 Turkish universities were selected as a case study. The productivity in Web of Science (WoS), Scopus and GS (2000–2013) were captured in two different measurement iterations (2014 and 2018). In addition, a total of 18,174 documents published by a subset of 14 research-focused universities were retrieved from WoS, verifying their presence in GS within the official university web domain. Findings suggest that the retroactive growth in GS is unpredictable and dependent on each university, making this parameter hard to evaluate at the institutional level. Otherwise, the correlation of productivity between GS (url-based method) and WoS and Scopus (selected sources) is moderately positive, even though it varies depending on the university, the year of publication, and the year of measurement. Finally, only 16% out of 18,174 articles analyzed were indexed in the official university website, although up to 84% were indexed in other GS sources. This work proves that the url-based method to calculate institutional productivity in GS is not a good proxy for the total number of publications indexed in WoS and Scopus, at least in the national context analyzed. However, the main reason is not directly related to the operation of GS, but with a lack of universities’ commitment to open access.

Suggested Citation

  • Enrique Orduna-Malea & Selenay Aytac & Clara Y. Tran, 2019. "Universities through the eyes of bibliographic databases: a retroactive growth comparison of Google Scholar, Scopus and Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 433-450, October.
  • Handle: RePEc:spr:scient:v:121:y:2019:i:1:d:10.1007_s11192-019-03208-7
    DOI: 10.1007/s11192-019-03208-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03208-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03208-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Mingers & Martin Meyer, 2017. "Normalizing Google Scholar data for use in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1111-1121, August.
    2. Anne-Wil Harzing, 2013. "A preliminary test of Google Scholar as a source for citation data: a longitudinal study of Nobel prize winners," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1057-1075, March.
    3. John Mingers & Martin Meyer, 2017. "Erratum to: Normalizing Google Scholar data for use in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1123-1124, August.
    4. Franceschini, Fiorenzo & Maisano, Domenico & Mastrogiacomo, Luca, 2016. "The museum of errors/horrors in Scopus," Journal of Informetrics, Elsevier, vol. 10(1), pages 174-182.
    5. Nabil Amara & Réjean Landry & Norrin Halilem, 2015. "What can university administrators do to increase the publication and citation scores of their faculty members?," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 489-530, May.
    6. Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.
    7. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    8. Isidro F. Aguillo, 2012. "Is Google Scholar useful for bibliometrics? A webometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 343-351, May.
    9. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    10. Anne-Wil Harzing, 2014. "A longitudinal study of Google Scholar coverage between 2012 and 2013," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 565-575, January.
    11. Franceschini, Fiorenzo & Maisano, Domenico & Mastrogiacomo, Luca, 2016. "Empirical analysis and classification of database errors in Scopus and Web of Science," Journal of Informetrics, Elsevier, vol. 10(4), pages 933-953.
    12. John Mingers & Jesse R. O’Hanley & Musbaudeen Okunola, 2017. "Using Google Scholar institutional level data to evaluate the quality of university research," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1627-1643, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelghani Maddi & Lesya Baudoin, 2022. "The quality of the web of science data: a longitudinal study on the completeness of authors-addresses links," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6279-6292, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin-Martin, Alberto & Orduna-Malea, Enrique & Harzing, Anne-Wil & Delgado López-Cózar, Emilio, 2017. "Can we use Google Scholar to identify highly-cited documents?," Journal of Informetrics, Elsevier, vol. 11(1), pages 152-163.
    2. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    3. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    4. Sergio Copiello, 2019. "The open access citation premium may depend on the openness and inclusiveness of the indexing database, but the relationship is controversial because it is ambiguous where the open access boundary lie," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 995-1018, November.
    5. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "A novel method for depicting academic disciplines through Google Scholar Citations: The case of Bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1251-1273, March.
    6. Cristòfol Rovira & Lluís Codina & Frederic Guerrero-Solé & Carlos Lopezosa, 2019. "Ranking by Relevance and Citation Counts, a Comparative Study: Google Scholar, Microsoft Academic, WoS and Scopus," Future Internet, MDPI, vol. 11(9), pages 1-21, September.
    7. Cristòfol Rovira & Lluís Codina & Carlos Lopezosa, 2021. "Language Bias in the Google Scholar Ranking Algorithm," Future Internet, MDPI, vol. 13(2), pages 1-17, January.
    8. Thelwall, Mike, 2018. "Microsoft Academic automatic document searches: Accuracy for journal articles and suitability for citation analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 1-9.
    9. Shirley Ainsworth & Jane M. Russell, 2018. "Has hosting on science direct improved the visibility of Latin American scholarly journals? A preliminary analysis of data quality," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1463-1484, June.
    10. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    11. Vivek Kumar Singh & Satya Swarup Srichandan & Hiran H. Lathabai, 2022. "ResearchGate and Google Scholar: how much do they differ in publications, citations and different metrics and why?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1515-1542, March.
    12. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    13. Anne K. Krüger, 2020. "Quantification 2.0? Bibliometric Infrastructures in Academic Evaluation," Politics and Governance, Cogitatio Press, vol. 8(2), pages 58-67.
    14. Hamid R. Jamali & Majid Nabavi, 2015. "Open access and sources of full-text articles in Google Scholar in different subject fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1635-1651, December.
    15. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    16. Tamás Stadler & Ágoston Temesi & Zoltán Lakner, 2022. "Soil Chemical Pollution and Military Actions: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Enrique Orduna-Malea & Juan M. Ayllón & Alberto Martín-Martín & Emilio Delgado López-Cózar, 2015. "Methods for estimating the size of Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 931-949, September.
    18. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    19. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    20. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:121:y:2019:i:1:d:10.1007_s11192-019-03208-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.