IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v90y2012i1d10.1007_s11192-011-0497-4.html
   My bibliography  Save this article

Strengthening competency linkage to innovation at Korean universities

Author

Listed:
  • Yong-Gil Lee

    (Inha University)

Abstract

The era of open and sustainable innovation has opened and requested new kinds of human resources (HRs) development at Korean universities. Typical academic and vocational education at universities does not effectively work in the age of technological convergence and open innovation. Knowledge and skills for Green growth and rapid technological innovation demand very skilful, broad, and complex competencies of HRs. Competencies for green growth and disruptive innovation are outlined and various methods to increase competencies at Korean universities are suggested in this study. This study explores the kinds of competencies for future society and suggests how university can contribute to cultivate talents for HRs with multi-functional and high competencies. The author takes a sketch of competence and skill structure in Korea, summarized in value chain of competencies among HRs with high competencies, HRs with medium competencies, and HRs with low competencies. Particularly the author addresses innovation oriented fields such as engineering and chemistry/pharmaceuticals, therefore, the picture can be different from typical manufacturing sectors such as automobile and shipbuilding. However, the manufacturing fields are also progressing into innovation centred sectors. And then the author explores the flow of each HRs according to levels and fields and how they affect Korean innovation system.

Suggested Citation

  • Yong-Gil Lee, 2012. "Strengthening competency linkage to innovation at Korean universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 219-230, January.
  • Handle: RePEc:spr:scient:v:90:y:2012:i:1:d:10.1007_s11192-011-0497-4
    DOI: 10.1007/s11192-011-0497-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0497-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0497-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. Duncan Gallie, 1991. "Patterns of Skill Change: Upskilling, Deskilling or the Polarization of Skills?," Work, Employment & Society, British Sociological Association, vol. 5(3), pages 319-351, September.
    3. Lee, Keun & Lim, Chaisung, 2001. "Technological regimes, catching-up and leapfrogging: findings from the Korean industries," Research Policy, Elsevier, vol. 30(3), pages 459-483, March.
    4. Aguirregabiria, Victor & Alonso-Borrego, Cesar, 2001. "Occupational structure, technological innovation, and reorganization of production," Labour Economics, Elsevier, vol. 8(1), pages 43-73, January.
    5. Leydesdorff, Loet & Meyer, Martin, 2006. "Triple Helix indicators of knowledge-based innovation systems: Introduction to the special issue," Research Policy, Elsevier, vol. 35(10), pages 1441-1449, December.
    6. Auerswald, Philip E & Branscomb, Lewis M, 2003. "Valleys of Death and Darwinian Seas: Financing the Invention to Innovation Transition in the United States," The Journal of Technology Transfer, Springer, vol. 28(3-4), pages 227-239, August.
    7. Stephen Machin & John Van Reenen, 1998. "Technology and Changes in Skill Structure: Evidence from Seven OECD Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1215-1244.
    8. Gautam Ahuja, 2000. "The duality of collaboration: inducements and opportunities in the formation of interfirm linkages," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 317-343, March.
    9. Loet Leydesdorff & Martin Meyer, 2010. "The decline of university patenting and the end of the Bayh–Dole effect," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 355-362, May.
    10. Yong-Gil Lee, 2008. "Patent licensability and life: A study of U.S. patents registered by South Korean public research institutes," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 463-471, June.
    11. Leydesdorff, Loet, 2000. "The triple helix: an evolutionary model of innovations," Research Policy, Elsevier, vol. 29(2), pages 243-255, February.
    12. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    13. Loet Leydesdorff & Martin Meyer, 2007. "The scientometrics of a Triple Helix of university-industry-government relations (Introduction to the topical issue)," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 207-222, February.
    14. Yong-Gil Lee, 2010. "Sectoral strategic differences of technological development between electronics and chemistry: a historical view from analyses of Korean-invented US patents during the period of 1989–1992," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 83-92, January.
    15. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obradović, Tena & Vlačić, Božidar & Dabić, Marina, 2021. "Open innovation in the manufacturing industry: A review and research agenda," Technovation, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, S.L. & Cacciolatti, L. & Lee, S.H. & Song, W., 2015. "Regional collaborations and indigenous innovation capabilities in China: A multivariate method for the analysis of regional innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 202-220.
    2. Øivind Strand & Inga Ivanova & Loet Leydesdorff, 2017. "Decomposing the Triple-Helix synergy into the regional innovation systems of Norway: firm data and patent networks," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 963-988, May.
    3. Liming Liang & Lixin Chen & Yishan Wu & Junpeng Yuan, 2012. "The role of Chinese universities in enterprise–university research collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 253-269, January.
    4. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    5. Swapan Kumar Patra & Mammo Muchie, 2018. "Research and innovation in South African universities: from the triple helix’s perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 51-76, July.
    6. Yutao Sun & Chen Zhang & Robert A. W. Kok, 2020. "The role of research outcome quality in the relationship between university research collaboration and technology transfer: empirical results from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1003-1026, February.
    7. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    8. Ivanova, Inga A. & Leydesdorff, Loet, 2014. "Rotational symmetry and the transformation of innovation systems in a Triple Helix of university–industry–government relations," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 143-156.
    9. Battaglia, Daniele & Landoni, Paolo & Rizzitelli, Francesco, 2017. "Organizational structures for external growth of University Technology Transfer Offices: An explorative analysis," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 45-56.
    10. Garcia, Angel & Jaumandreu, Jordi & Rodriguez, Cesar, 2004. "Innovation and jobs: evidence from manufacturing firms," MPRA Paper 1204, University Library of Munich, Germany.
    11. Souzanchi Kashani, Ebrahim & Roshani, Saeed, 2019. "Evolution of innovation system literature: Intellectual bases and emerging trends," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 68-80.
    12. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2018. "Technological research in the EU is less efficient than the world average. EU research policy risks Europeans’ future," Journal of Informetrics, Elsevier, vol. 12(3), pages 718-731.
    13. Vivarelli, Marco, 2012. "Innovation, Employment and Skills in Advanced and Developing Countries: A Survey of the Literature," IZA Discussion Papers 6291, Institute of Labor Economics (IZA).
    14. Jukka Majava & Ville Isoherranen & Pekka Kess, 2013. "Business Collaboration Concepts and Implications for Companies," International Journal of Synergy and Research, ToKnowPress, vol. 2(1), pages 23-40.
    15. Li, Yin & Arora, Sanjay & Youtie, Jan & Shapira, Philip, 2018. "Using web mining to explore Triple Helix influences on growth in small and mid-size firms," Technovation, Elsevier, vol. 76, pages 3-14.
    16. Hyeon Chang Kim & Woojin Yoon, 2019. "Study On Types Of Technology Cooperation Partner And Innovation Performance: Focusing On Incremental And Radical Innovation," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-25, January.
    17. Reza Naghizadeh & Shaban Elahi & Manoochehr Manteghi & Sepehr Ghazinoory & Marina Ranga, 2015. "Through the magnifying glass: an analysis of regional innovation models based on co-word and meta-synthesis methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2481-2505, November.
    18. Yutao Sun & Seamus Grimes, 2016. "The emerging dynamic structure of national innovation studies: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 17-40, January.
    19. Ranga, Marina & Hoareau, Cecile & Durazzi, Niccolo & Etzkowitz, Henry & Marcucci, Pamela & Usher, Alex, 2013. "Study on university-business cooperation in the US," LSE Research Online Documents on Economics 55424, London School of Economics and Political Science, LSE Library.
    20. Yong-Gil Lee, 2010. "Sectoral strategic differences of technological development between electronics and chemistry: a historical view from analyses of Korean-invented US patents during the period of 1989–1992," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 83-92, January.

    More about this item

    Keywords

    Competency; Skills; Korean universities; Innovation; Human resources circulation; Academic education; Vocational education;
    All these keywords.

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:90:y:2012:i:1:d:10.1007_s11192-011-0497-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.