IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v87y2011i3d10.1007_s11192-011-0358-1.html
   My bibliography  Save this article

Accuracy of inter-researcher similarity measures based on topical and social clues

Author

Listed:
  • Guillaume Cabanac

    (University of Toulouse)

Abstract

Scientific literature recommender systems (SLRSs) provide papers to researchers according to their scientific interests. Systems rely on inter-researcher similarity measures that are usually computed according to publication contents (i.e., by extracting paper topics and citations). We highlight two major issues related to this design. The required full-text access and processing are expensive and hardly feasible. Moreover, clues about meetings, encounters, and informal exchanges between researchers (which are related to a social dimension) were not exploited to date. In order to tackle these issues, we propose an original SLRS based on a threefold contribution. First, we argue the case for defining inter-researcher similarity measures building on publicly available metadata. Second, we define topical and social measures that we combine together to issue socio-topical recommendations. Third, we conduct an evaluation with 71 volunteer researchers to check researchers’ perception against socio-topical similarities. Experimental results show a significant 11.21% accuracy improvement of socio-topical recommendations compared to baseline topical recommendations.

Suggested Citation

  • Guillaume Cabanac, 2011. "Accuracy of inter-researcher similarity measures based on topical and social clues," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 597-620, June.
  • Handle: RePEc:spr:scient:v:87:y:2011:i:3:d:10.1007_s11192-011-0358-1
    DOI: 10.1007/s11192-011-0358-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0358-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0358-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Ljiljana Dolamic & Jacques Savoy, 2010. "When stopword lists make the difference," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 200-203, January.
    3. J. E. Hirsch, 2010. "An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 741-754, December.
    4. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    5. Patrick Glenisson & Wolfgang Glänzel & Olle Persson, 2005. "Combining full-text analysis and bibliometric indicators. A pilot study," Scientometrics, Springer;Akadémiai Kiadó, vol. 63(1), pages 163-180, March.
    6. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331.
    7. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    8. Ljiljana Dolamic & Jacques Savoy, 2010. "When stopword lists make the difference," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 200-203, January.
    9. Gilles Hubert & Josiane Mothe, 2009. "An adaptable search engine for multimodal information retrieval," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1625-1634, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabine Loudcher & Wararat Jakawat & Edmundo Pavel Soriano Morales & Cécile Favre, 2015. "Combining OLAP and information networks for bibliographic data analysis: a survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 471-487, May.
    2. Guillaume Cabanac, 2012. "Shaping the landscape of research in information systems from the perspective of editorial boards: A scientometric study of 77 leading journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 977-996, May.
    3. Guillaume Cabanac, 2012. "Shaping the landscape of research in information systems from the perspective of editorial boards: A scientometric study of 77 leading journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 977-996, May.
    4. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    5. Carla Mara Hilário & Maria Cláudia Cabrini Grácio & Daniel Martínez-Ávila & Dietmar Wolfram, 2023. "Authorship order as an indicator of similarity between article discourse and author citation identity in informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5389-5410, October.
    6. Guillaume Cabanac, 2013. "Experimenting with the partnership ability φ-index on a million computer scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 1-9, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingxin Gan & Lily Sun & Rui Jiang, 2019. "GLORY: Exploration and integration of global and local correlations to improve personalized online social recommendations," Information Systems Frontiers, Springer, vol. 21(4), pages 925-939, August.
    2. Enrico di Bella & Luca Gandullia & Sara Preti, 2021. "Analysis of scientific collaboration network of Italian Institute of Technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8517-8539, October.
    3. Dinesh Pradhan & Partha Sarathi Paul & Umesh Maheswari & Subrata Nandi & Tanmoy Chakraborty, 2017. "$$C^3$$ C 3 -index: a PageRank based multi-faceted metric for authors’ performance measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 253-273, January.
    4. Antonio Fernandez-Cano & Inés M. Fernández-Guerrero, 2017. "A multivariate model for evaluating emergency medicine journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 991-1003, February.
    5. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    6. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    7. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    8. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    9. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    10. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    11. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    12. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    13. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    14. Ash Mohammad Abbas, 2011. "Weighted indices for evaluating the quality of research with multiple authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 107-131, July.
    15. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    16. Jiang Wu, 2013. "Geographical knowledge diffusion and spatial diversity citation rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 181-201, January.
    17. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    18. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    19. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    20. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:87:y:2011:i:3:d:10.1007_s11192-011-0358-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.