IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v103y2015i2d10.1007_s11192-015-1539-0.html
   My bibliography  Save this article

Combining OLAP and information networks for bibliographic data analysis: a survey

Author

Listed:
  • Sabine Loudcher

    (Université de Lyon, (ERIC LYON 2))

  • Wararat Jakawat

    (Université de Lyon, (ERIC LYON 2))

  • Edmundo Pavel Soriano Morales

    (Université de Lyon, (ERIC LYON 2))

  • Cécile Favre

    (Université de Lyon, (ERIC LYON 2))

Abstract

In the context of scientometrics and bibliometrics, several research fields are dealing with bibliographic data. In this paper, we will explore how the combination of online analytical processing (OLAP) analysis and information networks could be an interesting issue. In Business Intelligence, OLAP is a technology supported by data warehousing systems. It provides tools for analyzing data according to multiple dimensions and multiple hierarchical levels. At the same time, several information networks (co-authors network, citations network, institutions network, etc.) can be built based on bibliographic databases. Originally, OLAP was introduced to analyze structured data. However, in this paper, we wonder if, by combining OLAP and information networks, we can provide a new way of analyzing bibliographic data. OLAP should be able to handle information networks and be also useful for monitoring, browsing and analyzing the content and the structure of bibliographic networks. The goal of this survey paper is to review previous work on OLAP and information networks dealing with bibliographic data. We also propose a comparison between traditional OLAP and OLAP on information networks and discuss the challenges OLAP faces regarding bibliographic networks.

Suggested Citation

  • Sabine Loudcher & Wararat Jakawat & Edmundo Pavel Soriano Morales & Cécile Favre, 2015. "Combining OLAP and information networks for bibliographic data analysis: a survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 471-487, May.
  • Handle: RePEc:spr:scient:v:103:y:2015:i:2:d:10.1007_s11192-015-1539-0
    DOI: 10.1007/s11192-015-1539-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1539-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1539-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. -, 2004. "Informe estadístico de la economía brasileña, marzo 2004," Informe Estadístico – Oficina de la CEPAL en Brasilia 28114, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    2. anonymous, 2004. "Information technology sector gains momentum," Western economic developments, Federal Reserve Bank of San Francisco, issue Mar, pages 1-3.
    3. -, 2004. "Informe estadístico de la economía brasileña, noviembre 2004," Informe Estadístico – Oficina de la CEPAL en Brasilia 28119, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Alfio Ferrara & Silvia Salini, 2012. "Ten challenges in modeling bibliographic data for bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 765-785, December.
    5. Emil Hudomalj & Gaj Vidmar, 2003. "OLAP and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 609-622, November.
    6. -, 2004. "Informe estadístico de la economía brasileña, diciembre 2004," Informe Estadístico – Oficina de la CEPAL en Brasilia 28120, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. -, 2004. "Informe estadístico de la economía brasileña, abril 2004," Informe Estadístico – Oficina de la CEPAL en Brasilia 28115, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Guillaume Cabanac, 2011. "Accuracy of inter-researcher similarity measures based on topical and social clues," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 597-620, June.
    9. Unknown, 2004. "Geographic Information System Analysis Team," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-1, February.
    10. -, 2004. "Informe estadístico de la economía brasileña, septiembre 2004," Informe Estadístico – Oficina de la CEPAL en Brasilia 28118, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    11. -, 2004. "Informe estadístico de la economía brasileña, febrero 2004," Informe Estadístico – Oficina de la CEPAL en Brasilia 28034, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    12. Unknown, 2004. "Current Information: Dissertation Abstracts," Journal of Rural Cooperation, Hebrew University, Center for Agricultural Economic Research, vol. 32(1), pages 1-4.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amine Ghrab & Oscar Romero & Sabri Skhiri & Esteban Zimányi, 2021. "TopoGraph: an End-To-End Framework to Build and Analyze Graph Cubes," Information Systems Frontiers, Springer, vol. 23(1), pages 203-226, February.
    2. Lee, O-Joun & Jeon, Hyeon-Ju & Jung, Jason J., 2021. "Learning multi-resolution representations of research patterns in bibliographic networks," Journal of Informetrics, Elsevier, vol. 15(1).
    3. Jérôme Darmont & Boris Novikov & Robert Wrembel & Ladjel Bellatreche, 2022. "Advances on Data Management and Information Systems," Information Systems Frontiers, Springer, vol. 24(1), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colin C. Williams & Brunilda Kosta, 2019. "Evaluating Institutional Theories Of Informal Sector Entrepreneurship: Some Lessons From Albania," Journal of Developmental Entrepreneurship (JDE), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-17, June.
    2. Colin C. Williams & Abbi Kedir, 2018. "Explaining Cross-National Variations In The Prevalence Of Informal Sector Entrepreneurship: Lessons From A Survey Of 142 Countries," Journal of Developmental Entrepreneurship (JDE), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-22, March.
    3. Nancy Benjamin & Ahmadou Aly Mbaye, 2014. "Informality, Growth, and Development in Africa," WIDER Working Paper Series wp-2014-052, World Institute for Development Economic Research (UNU-WIDER).
    4. Yu, Hairong & Davis, Mari & Wilson, Concepción S. & Cole, Fletcher T.H., 2008. "Object-relational data modelling for informetric databases," Journal of Informetrics, Elsevier, vol. 2(3), pages 240-251.
    5. Guillaume Cabanac, 2012. "Shaping the landscape of research in information systems from the perspective of editorial boards: A scientometric study of 77 leading journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 977-996, May.
    6. Francesca De Battisti & Alfio Ferrara & Silvia Salini, 2015. "A decade of research in statistics: a topic model approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 413-433, May.
    7. Massimo FLORIO & Francesco GIFFONI, 2019. "L’impatto sociale della produzione di scienza su larga scala: come governarlo?," Departmental Working Papers 2019-05, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    8. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    9. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    10. Guillaume Cabanac, 2012. "Shaping the landscape of research in information systems from the perspective of editorial boards: A scientometric study of 77 leading journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 977-996, May.
    11. Bornmann, Lutz, 2019. "Does the normalized citation impact of universities profit from certain properties of their published documents – such as the number of authors and the impact factor of the publishing journals? A mult," Journal of Informetrics, Elsevier, vol. 13(1), pages 170-184.
    12. Chen, Guo & Xiao, Lu, 2016. "Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods," Journal of Informetrics, Elsevier, vol. 10(1), pages 212-223.
    13. Alfio Ferrara & Silvia Salini, 2012. "Ten challenges in modeling bibliographic data for bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 765-785, December.
    14. Guillaume Cabanac, 2013. "Experimenting with the partnership ability φ-index on a million computer scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 1-9, July.
    15. Chyi-Kwei Yau & Alan Porter & Nils Newman & Arho Suominen, 2014. "Clustering scientific documents with topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 767-786, September.
    16. Francesca De Battisti & Silvia Salini, 2013. "Robust analysis of bibliometric data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 269-283, June.
    17. Carla Mara Hilário & Maria Cláudia Cabrini Grácio & Daniel Martínez-Ávila & Dietmar Wolfram, 2023. "Authorship order as an indicator of similarity between article discourse and author citation identity in informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5389-5410, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:103:y:2015:i:2:d:10.1007_s11192-015-1539-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.