IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v70y2007i1d10.1007_s11192-007-0111-y.html
   My bibliography  Save this article

Patent analysis of genetic engineering research in Japan, Korea and Taiwan

Author

Listed:
  • Szu-chia Lo

    (National Cheng-Kung University)

Abstract

The aim of this study is to reveal the research growth, the distribution of research productivity and impact of genetic engineering research in Japan, Korea and Taiwan by taking patent bibliometrics approach. This study uses quantitative methods adopt from bibliometrics to analyze the patents granted to Japan, Korea and Taiwan by United States Patent and Trademark Office (USPTO) from 1991 to 2002. In addition to patent and citation count, Bradford’s Law is applied to identify core assignees in genetic engineering. Patent coupling approach is taken to further analyze the patents granted to the core assignees to enclose the correlations among the core assignees. 13,055 genetic engineering patents were granted during the period of 1991 to 2002. Japan, Korea and Taiwan own 841 patents and Japan owns most of them. 270 assignees shared 841 patents and 16 core assignees are identified by the Bradford’s Law. 18,490 patents were cited by the 13,055 patents and 1,146 out of the 18,490 cited patents were granted to Japan, Korea and Taiwan. The results show Japan performs best in productivity and research impact among three countries. The core assignees are also Japan based institutions and four technical clusters are identified by patent coupling.

Suggested Citation

  • Szu-chia Lo, 2007. "Patent analysis of genetic engineering research in Japan, Korea and Taiwan," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 183-200, January.
  • Handle: RePEc:spr:scient:v:70:y:2007:i:1:d:10.1007_s11192-007-0111-y
    DOI: 10.1007/s11192-007-0111-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-0111-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-0111-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eisenschitz, T. S. & McKie, L. J. & Warne, K., 1989. "Communication of information in U.S. biotechnology patents," World Patent Information, Elsevier, vol. 11(1), pages 28-32.
    2. Shyama V. Ramani & Marie-Angele de Looze, 2002. "Using patent statistics as knowledge base indicators in the biotechnology sectors: An application to France, Germany and the U.K," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 319-346, July.
    3. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    4. Allen, Judith & Oppenheim, Charles, 1979. "The overlap of U.S. and Canadian patent literature with journal literature literature with journal literature," World Patent Information, Elsevier, vol. 1(2), pages 77-80, October.
    5. Albert Armando & Luis M. Plaza, 2004. "The transfer of knowledge from the Spanish public R&D system to the productive sectors in the field of Biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(1), pages 3-14, January.
    6. Francis Narin & Dominic Olivastro & Kimberly A. Stevens, 1994. "Bibliometrics/Theory, Practice and Problems," Evaluation Review, , vol. 18(1), pages 65-76, February.
    7. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    8. Henk F. Moed, 2000. "Bibliometric Indicators Reflect Publication and Management Strategies," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 323-346, February.
    9. Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
    10. Parthasarathi Banerjee & B. M. Gupta & K. C. Garg, 2000. "Patent Statistics as Indicators of Competition an Analysis of Patenting in Biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(1), pages 95-116, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Peng Yuan & Wei Ping Yue & Cheng Su & Zheng Wu & Zheng Ma & Yun Tao Pan & Nan Ma & Zhi Yu Hu & Fei Shi & Zheng Lu Yu & Yi Shan Wu, 2010. "Patent activity on water pollution and treatment in China—a scientometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 639-651, June.
    2. Xianwen Wang & Xi Zhang & Shenmeng Xu, 2011. "Patent co-citation networks of Fortune 500 companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 761-770, September.
    3. Ming-Chao Huang & Shih-Chieh Fang & Shao-Chi Chang, 2011. "Tracking R&D behavior: bibliometric analysis of drug patents in the Orange Book," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 805-818, September.
    4. Jane G. Payumo & Taurean C. Sutton, 2015. "A bibliometric assessment of ASEAN collaboration in plant biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1043-1059, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianwen Wang & Xi Zhang & Shenmeng Xu, 2011. "Patent co-citation networks of Fortune 500 companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 761-770, September.
    2. Szu-Chia Lo, 2008. "Patent coupling analysis of primary organizations in genetic engineering research," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(1), pages 143-151, January.
    3. Yao, Ye & Du, Huibin & Zou, Hongyang & Zhou, Peng & Antunes, Carlos Henggeler & Neumann, Anne & Yeh, Sonia, 2023. "Fifty years of Energy Policy: A bibliometric overview," Energy Policy, Elsevier, vol. 183(C).
    4. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    5. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    6. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    7. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    8. Gangan Prathap & Somenath Mukherjee, 2020. "Letter to the Editor: Comments on the paper of Batagelj—on fractional approach to analysis of linked networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2717-2722, September.
    9. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    10. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    11. Ignacio Rodríguez-Rodríguez & José-Víctor Rodríguez & Niloofar Shirvanizadeh & Andrés Ortiz & Domingo-Javier Pardo-Quiles, 2021. "Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    12. Ooms, Tahnee & Klaser, Klaudijo & Ishkanian, Armine, 2023. "The role of academia practice partnerships in the well-being economy: Retracing synergies between health and social sciences using bibliometric analysis," Health Policy, Elsevier, vol. 138(C).
    13. Manta Eduard Mihai & Davidescu Adriana Ana Maria & Geambasu Maria Cristina & Florescu Margareta Stela, 2023. "Exploring the research area of direct taxation. An empirical analysis based on bibliometric analysis results," Management & Marketing, Sciendo, vol. 18(s1), pages 355-383, December.
    14. Leslier Valenzuela-Fernández & Manuel Escobar-Farfán, 2022. "Zero-Waste Management and Sustainable Consumption: A Comprehensive Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    15. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    16. Raymundo das Neves Machado & Benjamín Vargas-Quesada & Jacqueline Leta, 2016. "Intellectual structure in stem cell research: exploring Brazilian scientific articles from 2001 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 525-537, February.
    17. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    18. Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
    19. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    20. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:70:y:2007:i:1:d:10.1007_s11192-007-0111-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.