IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v59y2004i1d10.1023_bscie.0000013298.22207.2b.html
   My bibliography  Save this article

Modelling the characteristics of Web page outlinks

Author

Listed:
  • Ajiferuke Isola

    (University of Western Ontario)

  • Wolfram Dietmar

    (School of Information Studies, University of Wisconsin-Milwaukee)

Abstract

Using data sampled from top-level Web pages across five high-level domains and from sample pages within individual websites, the authors investigate the frequency distribution of outlinks in Web pages. The observed distributions were fitted to different theoretical distributions to determine the best-fitting model for representing outlink frequency across Web pages. Theoretical models tested include the modified power law (MPL), Mandelbrot (MDB), generalized Waring (GW), generalized inverse Gaussian-Poisson (GIGP), and generalized negative binomial (GNB) distributions. The GIGP and GNB provided good fits for data sets for top-level pages across the high level domains tested, with the GIGP performing slightly better. The lumpiness and bimodal nature of two of the observed outlink distributions from Web pages within a given website resulted in poor fits of the theoretical models. The GIGP was able to provide better fits to these data sets after the top components were truncated. The ability to effectively model Web page attributes, such as the distribution of the number of outlinks per page, paves the way for simulation models of Web page structural content, and makes it possible to estimate the number of outlinks that may be encountered within Web pages of a specific domain or within individual websites.

Suggested Citation

  • Ajiferuke Isola & Wolfram Dietmar, 2004. "Modelling the characteristics of Web page outlinks," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(1), pages 43-62, January.
  • Handle: RePEc:spr:scient:v:59:y:2004:i:1:d:10.1023_b:scie.0000013298.22207.2b
    DOI: 10.1023/B:SCIE.0000013298.22207.2b
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:SCIE.0000013298.22207.2b
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:SCIE.0000013298.22207.2b?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    2. H. S. Sichel, 1985. "A bibliometric distribution which really works," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 36(5), pages 314-321, September.
    3. Michael Nelson & J. Stephen Downie, 2002. "Informetric analysis of a music database," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(2), pages 243-255, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    2. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    3. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    4. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    5. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    6. Baek, Seung Ki & Kim, Tae Young & Kim, Beom Jun, 2008. "Testing a priority-based queue model with Linux command histories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3660-3668.
    7. Freddy Hernán Cepeda López, 2008. "La topología de redes como herramienta de seguimiento en el Sistema de Pagos de Alto Valor en Colombia," Borradores de Economia 513, Banco de la Republica de Colombia.
    8. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    9. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    10. Chang, Chia-ling & Chen, Shu-heng, 2011. "Interactions in DSGE models: The Boltzmann-Gibbs machine and social networks approach," Economics Discussion Papers 2011-25, Kiel Institute for the World Economy (IfW Kiel).
    11. Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.
    12. Stefano Breschi & Lucia Cusmano, 2002. "Unveiling the Texture of a European Research Area: Emergence of Oligarchic Networks under EU Framework Programmes," KITeS Working Papers 130, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jul 2002.
    13. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    14. Huang, Huilin, 2009. "The degree sequences of an asymmetrical growing network," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 420-425, February.
    15. Gianluca Carnabuci, 2013. "The distribution of technological progress," Empirical Economics, Springer, vol. 44(3), pages 1143-1154, June.
    16. Zhengzheng Pan, 2012. "Opinions and Networks: How Do They Effect Each Other," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 157-171, February.
    17. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    18. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    19. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    20. Quentin L. Burrel, 2001. "Stochastic modelling of the first-citation distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(1), pages 3-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:59:y:2004:i:1:d:10.1023_b:scie.0000013298.22207.2b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.