IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i6d10.1007_s11192-024-05020-4.html
   My bibliography  Save this article

Modelling the triple helix system innovation of the main economies from Latin America: a coalitional game theory approach

Author

Listed:
  • Miguel A. Ortiz Acuña

    (Universidade Federal de Pernambuco)

  • Adiel T. Almeida Filho

    (Universidade Federal de Pernambuco)

  • Francisco S. Ramos

    (Governance and Compliance, PIMES-PPGEP, Federal University of Pernambuco (UFPE))

Abstract

This paper investigates the individual and collective scientific contributions carried out by the Triple Helix (University, Industry, and Government) in the areas that are considered of significant impact on innovation, such as Science, Technology, Engineering, and Mathematics (STEM) in the leading economies of Latin American, a zone with limited innovation systems and has experienced many changes in its political and economic structure in recent years. Three cooperative game theory metrics (core, shapley value, and nucleolus) were used to model each player’s individual and collective strength to create and maintain synergy. Bibliometric information on STEM areas was collected from the innovation systems of Brazil, Mexico, Chile, and Argentina; all this information was gathered from the Web of Science for ten years (2010–2020). The findings highlight that while universities play a central role in all four countries, government and industry involvement varies, with notable individual government participation in Brazil, Argentina, and Mexico; this scenario reflects that research is often conducted in isolation, marked by agility rather than collaborative efforts, frequently impeded by the extensive time required for organization and navigating bureaucratic processes. In contrast, Chile’s approach to collaboration, integrating government, industry, and universities, stands out for its efficient synergy and communication; it leverages the universities’ deep expertise, ensuring a balanced and effective participation in research across all sectors. This analysis reveals the diverse dynamics and collaborative patterns in these Latin American countries.

Suggested Citation

  • Miguel A. Ortiz Acuña & Adiel T. Almeida Filho & Francisco S. Ramos, 2024. "Modelling the triple helix system innovation of the main economies from Latin America: a coalitional game theory approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3245-3270, June.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05020-4
    DOI: 10.1007/s11192-024-05020-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05020-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05020-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. Marko M. Skoric, 2014. "The implications of big data for developing and transitional economies: Extending the Triple Helix?," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 175-186, April.
    3. Jyoti Paswan & Vivek Kumar Singh & Mousumi Karmakar & Prashasti Singh, 2022. "Does university–industry–government collaboration in research gets higher citation and altmetric impact? A case study from India," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6063-6082, November.
    4. Kimms, Alf & Çetiner, Demet, 2012. "Approximate nucleolus-based revenue sharing in airline alliances," European Journal of Operational Research, Elsevier, vol. 220(2), pages 510-521.
    5. Swapan Kumar Patra & Mammo Muchie, 2018. "Research and innovation in South African universities: from the triple helix’s perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 51-76, July.
    6. Loet Leydesdorff & Martin Meyer, 2003. "The Triple Helix of university-industry-government relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 191-203, October.
    7. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Éric Archambault & David Campbell & Yves Gingras & Vincent Larivière, 2009. "Comparing bibliometric statistics obtained from the Web of Science and Scopus," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(7), pages 1320-1326, July.
    9. Sasan Maleki & Talal Rahwan & Siddhartha Ghosh & Areej Malibari & Daniyal Alghazzawi & Alex Rogers & Hamid Beigy & Nicholas R Jennings, 2020. "The Shapley value for a fair division of group discounts for coordinating cooling loads," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-28, January.
    10. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    11. Popadiuk, Silvio & Choo, Chun Wei, 2006. "Innovation and knowledge creation: How are these concepts related?," International Journal of Information Management, Elsevier, vol. 26(4), pages 302-312.
    12. Moon, Hakil & Mariadoss, Babu John & Johnson, Jean L., 2019. "Collaboration with higher education institutions for successful firm innovation," Journal of Business Research, Elsevier, vol. 99(C), pages 534-541.
    13. Shapley, Lloyd S & Shubik, Martin, 1969. "Pure Competition, Coalitional Power, and Fair Division," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 337-362, October.
    14. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    15. Guillaume Cabanac, 2014. "Extracting and quantifying eponyms in full-text articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1631-1645, March.
    16. Cano-Berlanga, Sebastián & Giménez-Gómez, José-Manuel & Vilella, Cori, 2017. "Enjoying cooperative games: The R package GameTheory," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 381-393.
    17. Kiira Kärkkäinen & Stéphan Vincent-Lancrin, 2013. "Sparking Innovation in STEM Education with Technology and Collaboration: A Case Study of the HP Catalyst Initiative," OECD Education Working Papers 91, OECD Publishing.
    18. Schumpeter Tamada & Yusuke Naito & Fumio Kodama & Kiminori Gemba & Jun Suzuki, 2006. "Significant difference of dependence upon scientific knowledge among different technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 289-302, August.
    19. Strand, Øivind & Leydesdorff, Loet, 2013. "Where is synergy indicated in the Norwegian innovation system? Triple-Helix relations among technology, organization, and geography," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 471-484.
    20. Leydesdorff, Loet & Wagner, Caroline S., 2008. "International collaboration in science and the formation of a core group," Journal of Informetrics, Elsevier, vol. 2(4), pages 317-325.
    21. Martin Meyer & Tatiana Siniläinen & Jan Timm Utecht, 2003. "Towards hybrid Triple Helix indicators: A study of university-related patents and a survey of academic inventors," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 321-350, October.
    22. Yuri Basile Tukoff-Guimarães & Claudia Terezinha Kniess & Renato Penha & Mauro Silva Ruiz, 2021. "Patents valuation in core innovation: case study of a Brazilian public university," Innovation & Management Review, Emerald Group Publishing Limited, vol. 18(1), pages 34-50, March.
    23. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    24. Melin, Goran, 2000. "Pragmatism and self-organization: Research collaboration on the individual level," Research Policy, Elsevier, vol. 29(1), pages 31-40, January.
    25. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    26. Philip Cooke & Loet Leydesdorff, 2006. "Regional Development in the Knowledge-Based Economy: The Construction of Advantage," The Journal of Technology Transfer, Springer, vol. 31(1), pages 5-15, January.
    27. Shuo Xu & Liyuan Hao & Xin An & Dongsheng Zhai & Hongshen Pang, 2019. "Types of DOI errors of cited references in Web of Science with a cleaning method," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1427-1437, September.
    28. Glenda Kruss & Mariette Visser, 2017. "Putting university–industry interaction into perspective: a differentiated view from inside South African universities," The Journal of Technology Transfer, Springer, vol. 42(4), pages 884-908, August.
    29. Tao Zhuang & Shuliang Zhao & Mingliang Zheng & Jianxun Chu, 2021. "Triple helix relationship research on China's regional university–industry–government collaborative innovation: Based on provincial patent data," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1361-1386, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wang, 2023. "Research on the Coupling Coordination Degree of Triple Helix of Government Guidance, Industrial Innovation and Scientific Research Systems: Evidence from China," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    2. Mêgnigbêto, Eustache, 2018. "Modelling the Triple Helix of university-industry-government relationships with game theory: Core, Shapley value and nucleolus as indicators of synergy within an innovation system," Journal of Informetrics, Elsevier, vol. 12(4), pages 1118-1132.
    3. Svein Kyvik & Ingvild Reymert, 2017. "Research collaboration in groups and networks: differences across academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 951-967, November.
    4. Maxim Kotsemir & Tatiana Kuznetsova & Elena Nasybulina & Anna Pikalova, 2015. "Identifying Directions for Russia’s Science and Technology Cooperation," Foresight-Russia Форсайт, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 9(4 (eng)), pages 54-72.
    5. Antje Klitkou & Stian Nygaard & Martin Meyer, 2007. "Tracking techno-science networks: A case study of fuel cells and related hydrogen technology R&D in Norway," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 491-518, February.
    6. Young-Sun Jang & Young Joo Ko, 2019. "How latecomers catch up to leaders in high-energy physics as Big Science: transition from national system to international collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 437-480, April.
    7. Elizabeth S. Vieira, 2022. "International research collaboration in Africa: a bibliometric and thematic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2747-2772, May.
    8. Andrej Kastrin & Jelena Klisara & Borut Lužar & Janez Povh, 2017. "Analysis of Slovenian research community through bibliographic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 791-813, February.
    9. Sylvia Novillo-Villegas & Ricardo Ayala-Andrade & Juan Pablo Lopez-Cox & Javier Salazar-Oyaneder & Patricia Acosta-Vargas, 2022. "A Roadmap for Innovation Capacity in Developing Countries," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    10. Ali Gazni & Cassidy R. Sugimoto & Fereshteh Didegah, 2012. "Mapping world scientific collaboration: Authors, institutions, and countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(2), pages 323-335, February.
    11. Maxim N. Kotsemir & Tatiana E. Kuznetsova & Elena G. Nasybulina & Anna G. Pikalova, 2015. "Empirical Analysis of Multinational S&T Collaboration Priorities –The Case of Russia," HSE Working papers WP BRP 53/STI/2015, National Research University Higher School of Economics.
    12. Ortega, José Luis, 2014. "Influence of co-authorship networks in the research impact: Ego network analyses from Microsoft Academic Search," Journal of Informetrics, Elsevier, vol. 8(3), pages 728-737.
    13. Swapan Kumar Patra & Mammo Muchie, 2018. "Research and innovation in South African universities: from the triple helix’s perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 51-76, July.
    14. Byeongdeuk Jang & Jae-Yong Choung & Inje Kang, 2022. "Knowledge production patterns of China and the US: quantum technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5691-5719, October.
    15. Xiao-Ping Lei & Zhi-Yun Zhao & Xu Zhang & Dar-Zen Chen & Mu-Hsuan Huang & Yun-Hua Zhao, 2012. "The inventive activities and collaboration pattern of university–industry–government in China based on patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 231-251, January.
    16. Susan Biancani & Daniel McFarland, 2013. "Social Networks Research in Higher Education," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 4, pages 85-126.
    17. Gonzalez, Stéphane & Rostom, Fatma Zahra, 2022. "Sharing the global outcomes of finite natural resource exploitation: A dynamic coalitional stability perspective," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 1-10.
    18. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    19. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    20. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05020-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.