IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i11d10.1007_s11192-023-04747-w.html
   My bibliography  Save this article

COVID-19 knowledge deconstruction and retrieval: an intelligent bibliometric solution

Author

Listed:
  • Mengjia Wu

    (University of Technology Sydney)

  • Yi Zhang

    (University of Technology Sydney)

  • Mark Markley

    (Search Technology, Inc.)

  • Caitlin Cassidy

    (Search Technology, Inc.)

  • Nils Newman

    (Search Technology, Inc.)

  • Alan Porter

    (Search Technology, Inc.
    Georgia Institute of Technology)

Abstract

COVID-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood continues surging, researchers have been disadvantaged by not having access to a platform that can quickly synthesize emerging information and link the new knowledge to the latent knowledge foundation. Aiming to fill this gap, we propose a research framework and develop a dashboard that can assist scientists in identifying, retrieving, and understanding COVID-19 knowledge from the ocean of scholarly articles. Incorporating principal component decomposition (PCD), a knowledge mode-based search approach, and hierarchical topic tree (HTT) analysis, the proposed framework profiles the COVID-19 research landscape, retrieves topic-specific latent knowledge foundation, and visualizes knowledge structures. The regularly updated dashboard presents our research results. Addressing 127,971 COVID-19 research papers from PubMed, the PCD topic analysis identifies 35 research hotspots, along with their inner correlations and fluctuating trends. The HTT result segments the global knowledge landscape of COVID-19 into clinical and public health branches and reveals the deeper exploration of those studies. To supplement this analysis, we additionally built a knowledge model from research papers on the topic of vaccination and fetched 92,286 pre-Covid publications as the latent knowledge foundation for reference. The HTT analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization.

Suggested Citation

  • Mengjia Wu & Yi Zhang & Mark Markley & Caitlin Cassidy & Nils Newman & Alan Porter, 2024. "COVID-19 knowledge deconstruction and retrieval: an intelligent bibliometric solution," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7229-7259, November.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-023-04747-w
    DOI: 10.1007/s11192-023-04747-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-023-04747-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-023-04747-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-023-04747-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.