IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i8d10.1007_s11192-022-04449-9.html
   My bibliography  Save this article

Semantic Academic Profiler (SAP): a framework for researcher assessment based on semantic topic modeling

Author

Listed:
  • Felipe Viegas

    (Federal University of Minas Gerais)

  • Antônio Pereira

    (Federal University of São João Del Rey)

  • Pablo Cecílio

    (Federal University of São João Del Rey)

  • Elisa Tuler

    (Federal University of São João Del Rey)

  • Wagner Meira

    (Federal University of Minas Gerais)

  • Marcos Gonçalves

    (Federal University of Minas Gerais)

  • Leonardo Rocha

    (Federal University of São João Del Rey)

Abstract

Recent efforts have focused on identifying multidisciplinary teams and detecting co-Authorship Networks based on exploring topic modeling to identify researchers’ expertise. Though promising, none of these efforts perform a real-life evaluation of the quality of the built topics. This paper proposes a Semantic Academic Profiler (SAP) framework that allows summarizing articles written by researchers to automatically build research profiles and perform online evaluations regarding these built profiles. SAP exploits and extends state-of-the-art Topic Modeling strategies based on Cluwords considering n-grams and introduces a new visual interface able to highlight the main topics related to articles, researchers and institutions. To evaluate SAP’s capability of summarizing the profile of such entities as well as its usefulness for supporting online assessments of the topics’ quality, we perform and contrast two types of evaluation, considering an extensive repository of Brazilian curricula vitae: (1) an offline evaluation, in which we exploit a traditional metric (NPMI) to measure the quality of several data representations strategies including (i) TFIDF, (ii) TFIDF with Bi-grams, (iii) Cluwords, and (iv) CluWords with Bi-grams; and (2) an online evaluation through an A/B test where researchers evaluate their own built profiles. We also perform an online assessment of SAP user interface through a usability test following the SUS methodology. Our experiments indicate that the CluWords with Bi-grams is the best solution and the SAP interface is very useful. We also observed essential differences in the online and offline assessments, indicating that using both together is very important for a comprehensive quality evaluation. Such type of study is scarce in the literature and our findings open space for new lines of investigation in the Topic Modeling area.

Suggested Citation

  • Felipe Viegas & Antônio Pereira & Pablo Cecílio & Elisa Tuler & Wagner Meira & Marcos Gonçalves & Leonardo Rocha, 2022. "Semantic Academic Profiler (SAP): a framework for researcher assessment based on semantic topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 5005-5026, August.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04449-9
    DOI: 10.1007/s11192-022-04449-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04449-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04449-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajun Ji & Shengtai Zhang & Fang Han & Ran Cui & Tao Jiang, 2024. "The Sustainable Innovation of AI: Text Mining the Core Capabilities of Researchers in the Digital Age of Industry 4.0," Sustainability, MDPI, vol. 16(17), pages 1-17, September.
    2. Edré Moreira & Wagner Meira & Marcos André Gonçalves & Alberto H. F. Laender, 2023. "The rise of hyperprolific authors in computer science: characterization and implications," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2945-2974, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    2. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    3. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    4. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    5. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    7. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    8. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    9. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    10. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    11. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    12. Norma Salgado-Orellana & Emilio Berrocal de-Luna & Calixto Gutiérrez-Braojos, 2021. "A scientometric study of doctoral theses on the Roma in the Iberian Peninsula during the 1977–2018 period," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 437-458, January.
    13. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    14. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    15. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    16. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    17. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    18. Simone Belli & Carlos Gonzalo-Penela, 2020. "Science, research, and innovation infospheres in Google results of the Ibero-American countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 635-653, May.
    19. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    20. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04449-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.