IDEAS home Printed from https://ideas.repec.org/a/igg/jaci00/v11y2020i2p68-79.html
   My bibliography  Save this article

Unsupervised Keyword Extraction Methods Based on a Word Graph Network

Author

Listed:
  • Hongbin Wang

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, China)

  • Jingzhen Ye

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, China)

  • Zhengtao Yu

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, China)

  • Jian Wang

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, China)

  • Cunli Mao

    (Faculty of Information Engineering and Automation, Kunming University of Science and Technology, China)

Abstract

Supervised keyword extraction methods usually require a large human-annotated corpus to train the model. Expensive manual labeling has made unsupervised technology using word graph networks attractive. Traditional word graph networks simply consider the co-occurrence relationship of words or the topological structure of the network, ignoring the influence of semantic relations between words on keyword extraction. To solve these problems, an unsupervised keyword extraction method based on word graph networks for both Chinese and English is proposed. This method uses word embedding to applying a “word attraction score” to semantic relevance between words in a document. Combination of the bias weight of the node and a weighted PageRank algorithm is used to compute the final scores of words. The experimental results demonstrate that the method is more effective than the traditional methods.

Suggested Citation

  • Hongbin Wang & Jingzhen Ye & Zhengtao Yu & Jian Wang & Cunli Mao, 2020. "Unsupervised Keyword Extraction Methods Based on a Word Graph Network," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 11(2), pages 68-79, April.
  • Handle: RePEc:igg:jaci00:v:11:y:2020:i:2:p:68-79
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2020040104
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Zhang & Baozhen Lee & Qinghua Zhu & Xi Han & Ke Chen, 2023. "Document keyword extraction based on semantic hierarchical graph model," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2623-2647, May.
    2. Esra Gündoğan & Mehmet Kaya, 2022. "A novel hybrid paper recommendation system using deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3837-3855, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaci00:v:11:y:2020:i:2:p:68-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.