IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i11d10.1007_s11192-022-04282-0.html
   My bibliography  Save this article

Integrated knowledge content in an interdisciplinary field: identification, classification, and application

Author

Listed:
  • Shiyun Wang

    (Wuhan University
    Wuhan University)

  • Jin Mao

    (Wuhan University
    Wuhan University)

  • Yujie Cao

    (Central China Normal University)

  • Gang Li

    (Wuhan University
    Wuhan University)

Abstract

Interdisciplinary research has attracted extensive attention from researchers and policymakers by its nature of integrating various types of knowledge from multiple disciplines to solve complex scientific problems. Besides the studies on citation-based interdisciplinary knowledge flow, recent efforts have been made to demystify the characteristics of knowledge integration in interdisciplinary research from a knowledge content perspective. To deeply understand the knowledge content integrated into interdisciplinary research, two tasks were formulated in this study. One was to identify the knowledge units integrated by an interdisciplinary field, which are defined as integrated knowledge phrases (IKPs) shared between citances and cited texts of the references. The other was to classify the identified IKPs into several knowledge categories, which could reflect their knowledge functions in the field. We proposed a methodology framework to automate the identification and classification of IKPs by using natural language processing techniques and deep learning models. This automatic methodology was tested on an eHealth dataset. The experiments showed that the baseline matching method and the word embedding based similarity matching method are effective for the identification task, and the Bidirectional Encoder Representation from Transformers (BERT) model using section titles and citances as input features achieved the best performance on the classification task, with an accuracy of 0.951. We further showcased the application of IKPs in the case study with expanded literature of eHealth. The two tasks were operated on the new dataset, then co-occurrence networks of IKPs were constructed and mapped to visualize the knowledge integration structure of the field. This study provides a feasible content-based methodology to foster the fine-grained understanding of the knowledge integration structure of an interdisciplinary field, which could become a general domain analysis method.

Suggested Citation

  • Shiyun Wang & Jin Mao & Yujie Cao & Gang Li, 2022. "Integrated knowledge content in an interdisciplinary field: identification, classification, and application," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6581-6614, November.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-022-04282-0
    DOI: 10.1007/s11192-022-04282-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04282-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04282-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    3. Lili Wang & Ad Notten & Alexandru Surpatean, 2013. "Interdisciplinarity of nano research fields: a keyword mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 877-892, March.
    4. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    5. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    6. Leah G. Nichols, 2014. "A topic model approach to measuring interdisciplinarity at the National Science Foundation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 741-754, September.
    7. Qi Yu & Qi Wang & Yafei Zhang & Chongyan Chen & Hyeyoung Ryu & Namu Park & Jae-Eun Baek & Keyuan Li & Yifei Wu & Daifeng Li & Jian Xu & Meijun Liu & Jeremy J. Yang & Chenwei Zhang & Chao Lu & Peng Zha, 2021. "Analyzing knowledge entities about COVID-19 using entitymetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4491-4509, May.
    8. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    9. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    10. Xiaoying Li & Suyuan Peng & Jian Du, 2021. "Towards medical knowmetrics: representing and computing medical knowledge using semantic predications as the knowledge unit and the uncertainty as the knowledge context," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6225-6251, July.
    11. Alan L. Porter & Alex S. Cohen & J. David Roessner & Marty Perreault, 2007. "Measuring researcher interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(1), pages 117-147, July.
    12. Yujia Zhai & Ying Ding & Hezhao Zhang, 2021. "Innovation adoption: Broadcasting versus virality," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 403-416, April.
    13. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    14. Yu, Qi & Ding, Ying & Song, Min & Song, Sungjeon & Liu, Jianhua & Zhang, Bin, 2015. "Tracing database usage: Detecting main paths in database link networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 1-15.
    15. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    16. Alfredo Yegros-Yegros & Ismael Rafols & Pablo D’Este, 2015. "Does Interdisciplinary Research Lead to Higher Citation Impact? The Different Effect of Proximal and Distal Interdisciplinarity," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    17. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    19. Karen E. Pettigrew & Lynne (E.F.) McKechnie, 2001. "The use of theory in information science research," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(1), pages 62-73.
    20. Kevin Heffernan & Simone Teufel, 2018. "Identifying problems and solutions in scientific text," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1367-1382, August.
    21. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    22. Christine L. Borgman & Ronald E. Rice, 1992. "The convergence of information science and communication: A bibliometric analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(6), pages 397-411, July.
    23. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    24. Volkmar Engerer, 2017. "Exploring interdisciplinary relationships between linguistics and information retrieval from the 1960s to today," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(3), pages 660-680, March.
    25. S. Ravikumar & Ashutosh Agrahari & S. N. Singh, 2015. "Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 929-955, January.
    26. Yu-Wei Chang & Mu-Hsuan Huang, 2012. "A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 22-33, January.
    27. Rob Koopman & Shenghui Wang & Andrea Scharnhorst, 2017. "Contextualization of topics: browsing through the universe of bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1119-1139, May.
    28. Thed van Leeuwen & Robert Tijssen, 2000. "Interdisciplinary dynamics of modern science: analysis of cross-disciplinary citation flows," Research Evaluation, Oxford University Press, vol. 9(3), pages 183-187, December.
    29. Yu‐Wei Chang & Mu‐Hsuan Huang, 2012. "A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 22-33, January.
    30. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    31. Yongjun Zhu & Erjia Yan, 2015. "Dynamic subfield analysis of disciplines: an examination of the trading impact and knowledge diffusion patterns of computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 335-359, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhang & Chengzhi Zhang & Philipp Mayr & Arho Suominen, 2022. "An editorial of “AI + informetrics”: multi-disciplinary interactions in the era of big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6503-6507, November.
    2. Kong, Ling & Zhang, Wei & Hu, Haotian & Liang, Zhu & Han, Yonggang & Wang, Dongbo & Song, Min, 2024. "Transdisciplinary fine-grained citation content analysis: A multi-task learning perspective for citation aspect and sentiment classification," Journal of Informetrics, Elsevier, vol. 18(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    3. Kong, Ling & Zhang, Wei & Hu, Haotian & Liang, Zhu & Han, Yonggang & Wang, Dongbo & Song, Min, 2024. "Transdisciplinary fine-grained citation content analysis: A multi-task learning perspective for citation aspect and sentiment classification," Journal of Informetrics, Elsevier, vol. 18(3).
    4. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    5. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    6. Hongyu Zhou & Raf Guns & Tim C. E. Engels, 2022. "Are social sciences becoming more interdisciplinary? Evidence from publications 1960–2014," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1201-1221, September.
    7. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    8. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    9. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    10. Zuo, Zhiya & Zhao, Kang, 2018. "The more multidisciplinary the better? – The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions," Journal of Informetrics, Elsevier, vol. 12(3), pages 736-756.
    11. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    12. Lina Xu & Steven Dellaportas & Jin Wang, 2022. "A study of interdisciplinary accounting research: analysing the diversity of cited references," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(2), pages 2131-2162, June.
    13. Kavitha Karunan & Hiran H. Lathabai & Thara Prabhakaran, 2017. "Discovering interdisciplinary interactions between two research fields using citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 335-367, October.
    14. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    15. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    16. Lina Xu & Steven Dellaportas & Zhiqiang Yang & Jin Wang, 2023. "More on the relationship between interdisciplinary accounting research and citation impact," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4779-4803, December.
    17. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    18. Xiaolan Wu & Chengzhi Zhang, 2019. "Finding high-impact interdisciplinary users based on friend discipline distribution in academic social networking sites," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1017-1035, May.
    19. Hamid R. Jamali & Ghasem Azadi-Ahmadabadi & Saeid Asadi, 2018. "Interdisciplinary relations of converging technologies: Nano–Bio–Info–Cogno (NBIC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1055-1073, August.
    20. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-022-04282-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.