IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i3d10.1007_s11192-020-03718-9.html
   My bibliography  Save this article

Navigation-based candidate expansion and pretrained language models for citation recommendation

Author

Listed:
  • Rodrigo Nogueira

    (New York University
    University of Waterloo)

  • Zhiying Jiang

    (University of Waterloo)

  • Kyunghyun Cho

    (New York University
    New York University
    Facebook AI Research
    CIFAR Azrieli Global Scholar)

  • Jimmy Lin

    (University of Waterloo)

Abstract

Citation recommendation systems for the scientific literature, to help authors find papers that should be cited, have the potential to speed up discoveries and uncover new routes for scientific exploration. We treat this task as a ranking problem, which we tackle with a two-stage approach: candidate generation followed by reranking. Within this framework, we adapt to the scientific domain a proven combination based on “bag of words” retrieval followed by rescoring with a BERT model. We experimentally show the effects of domain adaptation, both in terms of pretraining on in-domain data and exploiting in-domain vocabulary. In addition, we introduce a novel navigation-based document expansion strategy to enrich the candidate documents fed into our neural models. On three benchmark datasets, our methods achieve or rival the state of the art in the citation recommendation task.

Suggested Citation

  • Rodrigo Nogueira & Zhiying Jiang & Kyunghyun Cho & Jimmy Lin, 2020. "Navigation-based candidate expansion and pretrained language models for citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 3001-3016, December.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03718-9
    DOI: 10.1007/s11192-020-03718-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03718-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03718-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Fiorini & Kathi Canese & Grisha Starchenko & Evgeny Kireev & Won Kim & Vadim Miller & Maxim Osipov & Michael Kholodov & Rafis Ismagilov & Sunil Mohan & James Ostell & Zhiyong Lu, 2018. "Best Match: New relevance search for PubMed," PLOS Biology, Public Library of Science, vol. 16(8), pages 1-12, August.
    2. Shutian Ma & Chengzhi Zhang & Xiaozhong Liu, 2020. "A review of citation recommendation: from textual content to enriched context," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1445-1472, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
    2. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    3. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    2. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.
    3. Orlando Fonseca Guilarte & Simone Diniz Junqueira Barbosa & Sinesio Pesco, 2021. "RelPath: an interactive tool to visualize branches of studies and quantify the expertise of authors by citation paths," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4871-4897, June.
    4. Trappey, Amy & Trappey, Charles V. & Hsieh, Alex, 2021. "An intelligent patent recommender adopting machine learning approach for natural language processing: A case study for smart machinery technology mining," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    5. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    6. Pengcheng Li & Wei Lu & Qikai Cheng, 2022. "Generating a related work section for scientific papers: an optimized approach with adopting problem and method information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4397-4417, August.
    7. Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
    8. Shutian Ma & Heng Zhang & Chengzhi Zhang & Xiaozhong Liu, 2021. "Chronological citation recommendation with time preference," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2991-3010, April.
    9. Yongquan Chen & Ying Jiang & Haiyi Liu, 2023. "Analysis Method of App Software User Experience Based on Multisource Information Fusion," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 19(1), pages 1-22, January.
    10. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    11. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.
    12. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    13. Yadav, Pratyush & Pervin, Nargis, 2022. "Towards efficient navigation in digital libraries: Leveraging popularity, semantics and communities to recommend scholarly articles," Journal of Informetrics, Elsevier, vol. 16(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03718-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.