IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2005343.html
   My bibliography  Save this article

Best Match: New relevance search for PubMed

Author

Listed:
  • Nicolas Fiorini
  • Kathi Canese
  • Grisha Starchenko
  • Evgeny Kireev
  • Won Kim
  • Vadim Miller
  • Maxim Osipov
  • Michael Kholodov
  • Rafis Ismagilov
  • Sunil Mohan
  • James Ostell
  • Zhiyong Lu

Abstract

PubMed is a free search engine for biomedical literature accessed by millions of users from around the world each day. With the rapid growth of biomedical literature—about two articles are added every minute on average—finding and retrieving the most relevant papers for a given query is increasingly challenging. We present Best Match, a new relevance search algorithm for PubMed that leverages the intelligence of our users and cutting-edge machine-learning technology as an alternative to the traditional date sort order. The Best Match algorithm is trained with past user searches with dozens of relevance-ranking signals (factors), the most important being the past usage of an article, publication date, relevance score, and type of article. This new algorithm demonstrates state-of-the-art retrieval performance in benchmarking experiments as well as an improved user experience in real-world testing (over 20% increase in user click-through rate). Since its deployment in June 2017, we have observed a significant increase (60%) in PubMed searches with relevance sort order: it now assists millions of PubMed searches each week. In this work, we hope to increase the awareness and transparency of this new relevance sort option for PubMed users, enabling them to retrieve information more effectively.

Suggested Citation

  • Nicolas Fiorini & Kathi Canese & Grisha Starchenko & Evgeny Kireev & Won Kim & Vadim Miller & Maxim Osipov & Michael Kholodov & Rafis Ismagilov & Sunil Mohan & James Ostell & Zhiyong Lu, 2018. "Best Match: New relevance search for PubMed," PLOS Biology, Public Library of Science, vol. 16(8), pages 1-12, August.
  • Handle: RePEc:plo:pbio00:2005343
    DOI: 10.1371/journal.pbio.2005343
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005343
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2005343&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2005343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    2. Rodrigo Nogueira & Zhiying Jiang & Kyunghyun Cho & Jimmy Lin, 2020. "Navigation-based candidate expansion and pretrained language models for citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 3001-3016, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2005343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.