IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i3d10.1007_s11192-020-03683-3.html
   My bibliography  Save this article

Knowledge fusion through academic articles: a survey of definitions, techniques, applications and challenges

Author

Listed:
  • Yu Zhang

    (UNSW Canberra)

  • Min Wang

    (UNSW Canberra)

  • Morteza Saberi

    (University of Technology Sydney)

  • Elizabeth Chang

    (UNSW Canberra)

Abstract

The ever growing volume of academic articles stresses the need for a new generation of knowledge management method to intelligently reuse the academic knowledge and facilitate the development of scientific research. Knowledge fusion (KF) serves a key element of such method addressing those needs, and breakthrough progress has taken place in the field of KF. This brings a great opportunity for the academic community to expedite the process of literature review and automatically retrieve the required knowledge from academic publications. Therefore, a survey reviewing the KF studies in terms of the related technologies and applications for valuable insights to reuse academic knowledge, which is missing from the state-of-the-art literature, is in need. Motivated to bridge this gap, this paper conducts a systematic survey reviewing the existing studies on KF, meanwhile discussing the opportunities and challenges of applying KF through academic articles. To this end, we revisit the definitions of knowledge and KF in the context of academic articles, and summarise the fusion patterns and their usage in existing applications. Furthermore, we review the techniques and applications of KF, especially those with academic articles as sources of knowledge. Finally, we discuss the challenges and future directions in order to bring new insights to researchers and practitioners to deepen their understanding of knowledge fusion and to develop versatile functions.

Suggested Citation

  • Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2020. "Knowledge fusion through academic articles: a survey of definitions, techniques, applications and challenges," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2637-2666, December.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03683-3
    DOI: 10.1007/s11192-020-03683-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03683-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03683-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    2. Wen-Ta Chiu & Jing-Shan Huang & Yuh-Shan Ho, 2004. "Bibliometric analysis of Severe Acute Respiratory Syndrome-related research in the beginning stage," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 69-77, September.
    3. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    4. Guerrero-Bote, Vicente P. & Moya-Anegón, Félix, 2012. "A further step forward in measuring journals’ scientific prestige: The SJR2 indicator," Journal of Informetrics, Elsevier, vol. 6(4), pages 674-688.
    5. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    6. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    7. Goodall, Amanda H., 2009. "Highly cited leaders and the performance of research universities," Research Policy, Elsevier, vol. 38(7), pages 1079-1092, September.
    8. Fiala, Dalibor, 2012. "Time-aware PageRank for bibliographic networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 370-388.
    9. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    10. Ying Ding, 2011. "Topic-based PageRank on author cocitation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 449-466, March.
    11. Wanying Ding & Chaomei Chen, 2014. "Dynamic topic detection and tracking: A comparison of HDP, C-word, and cocitation methods," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(10), pages 2084-2097, October.
    12. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    13. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    14. Wingyan Chung & Yiwen Zhang & Zan Huang & Gang Wang & Thian‐Huat Ong & Hsinchun Chen, 2004. "Internet searching and browsing in a multilingual world: An experiment on the Chinese Business Intelligence Portal (CBizPort)," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 55(9), pages 818-831, July.
    15. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    16. Tian, Yangge & Wen, Cheng & Hong, Song, 2008. "Global scientific production on GIS research by bibliometric analysis from 1997 to 2006," Journal of Informetrics, Elsevier, vol. 2(1), pages 65-74.
    17. Ying Ding, 2011. "Topic‐based PageRank on author cocitation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(3), pages 449-466, March.
    18. Byron Marshall & Daniel McDonald & Hsinchun Chen & Wingyan Chung, 2004. "EBizPort: Collecting and analyzing business intelligence information," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 55(10), pages 873-891, August.
    19. Xu, Han & Martin, Eric & Mahidadia, Ashesh, 2014. "Contents and time sensitive document ranking of scientific literature," Journal of Informetrics, Elsevier, vol. 8(3), pages 546-561.
    20. Yu Zhang & Morteza Saberi & Elizabeth Chang, 2018. "A semantic-based knowledge fusion model for solution-oriented information network development: a case study in intrusion detection field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 857-886, November.
    21. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    22. Feng Niu & Ce Zhang & Christopher Ré & Jude Shavlik, 2012. "Elementary: Large-Scale Knowledge-Base Construction via Machine Learning and Statistical Inference," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 8(3), pages 42-73, July.
    23. Waltman, Ludo & van Eck, Nees Jan & van Leeuwen, Thed N. & Visser, Martijn S., 2013. "Some modifications to the SNIP journal impact indicator," Journal of Informetrics, Elsevier, vol. 7(2), pages 272-285.
    24. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    25. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P‐Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    26. Gianfranco Ennas & Battista Biggio & Maria Chiara Di Guardo, 2015. "Data-driven journal meta-ranking in business and management," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1911-1929, December.
    27. Zhang, Yu & Wang, Min & Gottwalt, Florian & Saberi, Morteza & Chang, Elizabeth, 2019. "Ranking scientific articles based on bibliometric networks with a weighting scheme," Journal of Informetrics, Elsevier, vol. 13(2), pages 616-634.
    28. Xiaozhong Liu & Jian Qin, 2014. "An interactive metadata model for structural, descriptive, and referential representation of scholarly output," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 964-983, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    2. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    3. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    4. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.
    5. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    6. Liwei Cai & Jiahao Tian & Jiaying Liu & Xiaomei Bai & Ivan Lee & Xiangjie Kong & Feng Xia, 2019. "Scholarly impact assessment: a survey of citation weighting solutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 453-478, February.
    7. Walters, William H., 2017. "Do subjective journal ratings represent whole journals or typical articles? Unweighted or weighted citation impact?," Journal of Informetrics, Elsevier, vol. 11(3), pages 730-744.
    8. Mingers, John & Yang, Liying, 2017. "Evaluating journal quality: A review of journal citation indicators and ranking in business and management," European Journal of Operational Research, Elsevier, vol. 257(1), pages 323-337.
    9. B Ian Hutchins & Xin Yuan & James M Anderson & George M Santangelo, 2016. "Relative Citation Ratio (RCR): A New Metric That Uses Citation Rates to Measure Influence at the Article Level," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-25, September.
    10. Yu Zhang & Morteza Saberi & Elizabeth Chang, 2018. "A semantic-based knowledge fusion model for solution-oriented information network development: a case study in intrusion detection field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 857-886, November.
    11. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    12. Erjia Yan, 2014. "Topic-based Pagerank: toward a topic-level scientific evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 407-437, August.
    13. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    14. Yuanyuan Liu & Qiang Wu & Shijie Wu & Yong Gao, 2021. "Weighted citation based on ranking-related contribution: a new index for evaluating article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8653-8672, October.
    15. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.
    16. Ana Teresa Santos & Sandro Mendonça, 2022. "Do papers (really) match journals’ “aims and scope”? A computational assessment of innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7449-7470, December.
    17. Antonia Ferrer-Sapena & Susana Díaz-Novillo & Enrique A. Sánchez-Pérez, 2017. "Measuring Time-Dynamics and Time-Stability of Journal Rankings in Mathematics and Physics by Means of Fractional p -Variations," Publications, MDPI, vol. 5(3), pages 1-14, September.
    18. Ludo Waltman & Erjia Yan & Nees Jan Eck, 2011. "A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 301-314, October.
    19. Amodio, Pierluigi & Brugnano, Luigi & Scarselli, Filippo, 2021. "Implementation of the PaperRank and AuthorRank indices in the Scopus database," Journal of Informetrics, Elsevier, vol. 15(4).
    20. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03683-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.