IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v123y2020i2d10.1007_s11192-020-03385-w.html
   My bibliography  Save this article

Research on classification and similarity of patent citation based on deep learning

Author

Listed:
  • Yonghe Lu

    (Sun Yat-sen University)

  • Xin Xiong

    (Sun Yat-sen University)

  • Weiting Zhang

    (Sun Yat-sen University)

  • Jiaxin Liu

    (Sun Yat-sen University)

  • Ruijie Zhao

    (Sun Yat-sen University)

Abstract

This paper proposes a patent citation classification model based on deep learning, and collects the patent datasets in text analysis and communication area from Google patent database to evaluate the classification effect of the model. At the same time, considering the technical relevance between the examiners’ citations and the pending patent, this paper proposes a hypothesis to take the output value of the model as the technology similarity of two patents. The rationality of the hypothesis is verified from the perspective of machine statistics and manual spot check. The experimental results show that the model effect based on deep learning proposed in this paper is significantly better than the traditional text representation and classification method, while having higher robustness than the method combining Doc2vec and traditional classification technology. In addition, we compare between the proposed method based on deep learning and the traditional similarity method by a triple verification. It shows that the proposed method is more accurate in calculating technology similarity of patents. And the results of manual sampling show that it is reasonable to use the output value of the proposed model to represent the technology similarity of patents.

Suggested Citation

  • Yonghe Lu & Xin Xiong & Weiting Zhang & Jiaxin Liu & Ruijie Zhao, 2020. "Research on classification and similarity of patent citation based on deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 813-839, May.
  • Handle: RePEc:spr:scient:v:123:y:2020:i:2:d:10.1007_s11192-020-03385-w
    DOI: 10.1007/s11192-020-03385-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03385-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03385-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    2. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    3. Hui-Yun Sung & Hsi-Yin Yeh & Jin-Kwan Lin & Ssu-Han Chen, 2017. "A visualization tool of patent topic evolution using a growing cell structure neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1267-1285, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    2. Arash Hajikhani & Arho Suominen, 2022. "Mapping the sustainable development goals (SDGs) in science, technology and innovation: application of machine learning in SDG-oriented artefact detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6661-6693, November.
    3. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
    2. Uwe Cantner & Martin Kalthaus & Matthias Menter & Pierre Mohnen, 2023. "Global knowledge flows: characteristics, determinants, and impacts," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(5), pages 1063-1076.
    3. Henri A. Schildt & Markku V.J. Maula & Thomas Keil, 2005. "Explorative and Exploitative Learning from External Corporate Ventures," Entrepreneurship Theory and Practice, , vol. 29(4), pages 493-515, July.
    4. Colin Davis, 2013. "Regional integration and innovation offshoring with occupational choice and endogenous growth," Journal of Economics, Springer, vol. 108(1), pages 59-79, January.
    5. Anna M. Ferragina & Giulia Nunziante, 2018. "Are Italian firms performances influenced by innovation of domestic and foreign firms nearby in space and sectors?," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 335-360, September.
    6. Vu Hoang Duong & Tuong Phi Vinh, 2024. "Spillover effects of Japanese firms and the role of absorptive capacity in Vietnam," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 38(2), pages 22-41, November.
    7. Zhang, Feng & Jiang, Guohua & Cantwell, John A., 2015. "Subsidiary exploration and the innovative performance of large multinational corporations," International Business Review, Elsevier, vol. 24(2), pages 224-234.
    8. Pauly, Stefan & Stipanicic, Fernando, 2021. "The creation and diffusion of knowledge: Evidence from the Jet Age," CEPREMAP Working Papers (Docweb) 2112, CEPREMAP.
    9. Saul Lach & Mark Schankerman, 2008. "Incentives and invention in universities," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 403-433, June.
    10. Jarle Moen, 2005. "Is Mobility of Technical Personnel a Source of R&D Spillovers?," Journal of Labor Economics, University of Chicago Press, vol. 23(1), pages 81-114, January.
    11. Jonas Heiberg & Bernhard Truffer, 2021. "The emergence of a global innovation system – a case study from the water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(09), GEIST Working Paper Series.
    12. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    13. Cristina Chaminade & Monica Plechero, 2015. "Do Regions Make a Difference? Regional Innovation Systems and Global Innovation Networks in the ICT Industry," European Planning Studies, Taylor & Francis Journals, vol. 23(2), pages 215-237, February.
    14. Isaksson, Olov H.D. & Simeth, Markus & Seifert, Ralf W., 2016. "Knowledge spillovers in the supply chain: Evidence from the high tech sectors," Research Policy, Elsevier, vol. 45(3), pages 699-706.
    15. Dietmar Harhoff & Elisabeth Mueller & John Van Reenen, 2014. "What are the Channels for Technology Sourcing? Panel Data Evidence from German Companies," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 23(1), pages 204-224, March.
    16. Grant H. Lewis, 2017. "Effects of federal socioeconomic contracting preferences," Small Business Economics, Springer, vol. 49(4), pages 763-783, December.
    17. Seokbeom Kwon & Jan Youtie & Alan Porter & Nils Newman, 2024. "How does regulatory uncertainty shape the innovation process? Evidence from the case of nanomedicine," The Journal of Technology Transfer, Springer, vol. 49(1), pages 262-302, February.
    18. Jørn Rattsø & Hildegunn E. Stokke, 2011. "Accumulation of education and regional income growth: Limited human capital effects in Norway," Working Paper Series 11211, Department of Economics, Norwegian University of Science and Technology.
    19. Gassmann, Oliver & Keupp, Marcus Matthias, 2007. "The competitive advantage of early and rapidly internationalising SMEs in the biotechnology industry: A knowledge-based view," Journal of World Business, Elsevier, vol. 42(3), pages 350-366, September.
    20. Gaspar, Jess & Glaeser, Edward L., 1998. "Information Technology and the Future of Cities," Journal of Urban Economics, Elsevier, vol. 43(1), pages 136-156, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:123:y:2020:i:2:d:10.1007_s11192-020-03385-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.