IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v121y2019i3d10.1007_s11192-019-03232-7.html
   My bibliography  Save this article

Predicting the research performance of early career scientists

Author

Listed:
  • Danielle H. Lee

    (Sangmyung University)

Abstract

This paper examines how early career-related factors can predict the future research performance of computer and information scientists. Although a few bibliometric studies have previously investigated multiple factors relating to early career scientists that significantly predict their future research performance, there have been limited studies on early career-related factors affecting scientists in the fields of information science and computer science. This study analyzes 4102 scientists whose publishing careers started in the same year. The criteria used to quantify future research performance of the target scientists included the number of publications and citation counts of publications in a 4-year citation window to indicate future research productivity and research impact, respectively. These criteria were regressed on 13 early career-related factors. The results showed that these factors accounted for about 27% and 23% of the future productivity of the target scientists in terms of journal articles and conference papers, respectively; these 13 factors were also responsible for 19% of the future impact of target scientists’ journal articles and 19% of the future impact of their conference papers. The factor that most contributed to explaining the future research performance (i.e. publication numbers) and future research impact (i.e. citation counts of publications) was the number of publications (both journal articles and conference papers) produced by the target scientists in their early career years.

Suggested Citation

  • Danielle H. Lee, 2019. "Predicting the research performance of early career scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1481-1504, December.
  • Handle: RePEc:spr:scient:v:121:y:2019:i:3:d:10.1007_s11192-019-03232-7
    DOI: 10.1007/s11192-019-03232-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03232-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03232-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    2. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    3. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    4. Vincent Larivière & Cassidy R. Sugimoto & Blaise Cronin, 2012. "A bibliometric chronicling of library and information science's first hundred years," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 997-1016, May.
    5. Kayvan Kousha & Mike Thelwall, 2007. "Google Scholar citations and Google Web/URL citations: A multi‐discipline exploratory analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1055-1065, May.
    6. Cynthia Lisée & Vincent Larivière & Éric Archambault, 2008. "Conference proceedings as a source of scientific information: A bibliometric analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(11), pages 1776-1784, September.
    7. Lutz Bornmann & Rüdiger Mutz & Hans‐Dieter Daniel, 2008. "Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(5), pages 830-837, March.
    8. Nicolas Carayol & Mireille Matt, 2004. "Does research organization influence academic production ?," Post-Print hal-00279014, HAL.
    9. Pu Han & Jin Shi & Xiaoyan Li & Dongbo Wang & Si Shen & Xinning Su, 2014. "International collaboration in LIS: global trends and networks at the country and institution level," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 53-72, January.
    10. Li, Eldon Y. & Liao, Chien Hsiang & Yen, Hsiuju Rebecca, 2013. "Co-authorship networks and research impact: A social capital perspective," Research Policy, Elsevier, vol. 42(9), pages 1515-1530.
    11. Gerard Pasterkamp & Joris I. Rotmans & Dominique V. P. Kleijn & Cornelius Borst, 2007. "Citation frequency: A biased measure of research impact significantly influenced by the geographical origin of research articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 153-165, January.
    12. Tove Faber Frandsen & Jeppe Nicolaisen, 2012. "Effects of academic experience and prestige on researchers' citing behavior," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 64-71, January.
    13. Johannes Hönekopp & Julie Khan, 2012. "Future publication success in science is better predicted by traditional measures than by the h index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 843-853, March.
    14. Yoshiyuki Takeda & Yuya Kajikawa, 2010. "Tracking modularity in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 783-792, June.
    15. Matthew RE Symonds & Neil J Gemmell & Tamsin L Braisher & Kylie L Gorringe & Mark A Elgar, 2006. "Gender Differences in Publication Output: Towards an Unbiased Metric of Research Performance," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-5, December.
    16. Waltman, L. & van Eck, N.J.P., 2009. "A Taxonomy of Bibliometric Performance Indicators Based on the Property of Consistency," ERIM Report Series Research in Management ERS-2009-014-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Frank Havemann & Birger Larsen, 2015. "Bibliometric indicators of young authors in astrophysics: Can later stars be predicted?," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1413-1434, February.
    18. Daniel E. Acuna & Stefano Allesina & Konrad P. Kording, 2012. "Predicting scientific success," Nature, Nature, vol. 489(7415), pages 201-202, September.
    19. Christopher McCarty & James W. Jawitz & Allison Hopkins & Alex Goldman, 2013. "Predicting author h-index using characteristics of the co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 467-483, August.
    20. Bornmann, Lutz & Williams, Richard, 2017. "Can the journal impact factor be used as a criterion for the selection of junior researchers? A large-scale empirical study based on ResearcherID data," Journal of Informetrics, Elsevier, vol. 11(3), pages 788-799.
    21. Giovanni Abramo & Ciriaco Andrea D’Angelo, 2014. "How do you define and measure research productivity?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1129-1144, November.
    22. Jinseok Kim, 2019. "Author‐based analysis of conference versus journal publication in computer science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(1), pages 71-82, January.
    23. Anton J. Nederhof, 2006. "Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(1), pages 81-100, January.
    24. Carayol, Nicolas & Matt, Mireille, 2004. "Does research organization influence academic production?: Laboratory level evidence from a large European university," Research Policy, Elsevier, vol. 33(8), pages 1081-1102, October.
    25. Jonas Lindahl & Rickard Danell, 2016. "The information value of early career productivity in mathematics: a ROC analysis of prediction errors in bibliometricly informed decision making," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2241-2262, December.
    26. Lindahl, Jonas, 2018. "Predicting research excellence at the individual level: The importance of publication rate, top journal publications, and top 10% publications in the case of early career mathematicians," Journal of Informetrics, Elsevier, vol. 12(2), pages 518-533.
    27. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    28. Dag W. Aksnes, 2003. "A macro study of self-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(2), pages 235-246, February.
    29. Jonathan M. Levitt & Mike Thelwall, 2016. "Long term productivity and collaboration in information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1103-1117, September.
    30. Waltman, Ludo & van Eck, Nees Jan & Wouters, Paul, 2013. "Counting publications and citations: Is more always better?," Journal of Informetrics, Elsevier, vol. 7(3), pages 635-641.
    31. Zhigang Hu & Chaomei Chen & Zeyuan Liu, 2014. "How are collaboration and productivity correlated at various career stages of scientists?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1553-1564, November.
    32. Danielle H. Lee, 2019. "Predictive power of conference-related factors on citation rates of conference papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 281-304, January.
    33. Vincent Larivière & Cassidy R. Sugimoto & Blaise Cronin, 2012. "A bibliometric chronicling of library and information science's first hundred years," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 997-1016, May.
    34. Pablo Jensen & Jean-Baptiste Rouquier & Yves Croissant, 2009. "Testing bibliometric indicators by their prediction of scientists promotions," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(3), pages 467-479, March.
    35. Rodrigo Costas & María Bordons, 2011. "Do age and professional rank influence the order of authorship in scientific publications? Some evidence from a micro-level perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 145-161, July.
    36. Tove Faber Frandsen & Jeppe Nicolaisen, 2012. "Effects of academic experience and prestige on researchers' citing behavior," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 64-71, January.
    37. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.
    2. Meijun Liu & Sijie Yang & Yi Bu & Ning Zhang, 2023. "Female early-career scientists have conducted less interdisciplinary research in the past six decades: evidence from doctoral theses," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.
    3. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    4. Lin Zhu & Junjie Zhang & Scott W. Cunningham, 2022. "Domain expertise extraction for finding rising stars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5475-5495, September.
    5. Li Hou & Qiang Wu & Yundong Xie, 2022. "Does early publishing in top journals really predict long-term scientific success in the business field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6083-6107, November.
    6. Yu-Wei Chang, 2021. "Characteristics of high research performance authors in the field of library and information science and those of their articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3373-3391, April.
    7. Mario González-Sauri & Giulia Rossello, 2023. "The Role of Early-Career University Prestige Stratification on the Future Academic Performance of Scholars," Research in Higher Education, Springer;Association for Institutional Research, vol. 64(1), pages 58-94, February.
    8. Hou, Li & Wu, Qiang & Xie, Yundong, 2024. "Does open identity of peer reviewers positively relate to citations?," Journal of Informetrics, Elsevier, vol. 18(1).
    9. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    10. Rojko, Katarina & Lužar, Borut, 2022. "Scientific performance across research disciplines: Trends and differences in the case of Slovenia," Journal of Informetrics, Elsevier, vol. 16(2).
    11. Isabel M. Habicht & Mark Lutter & Martin Schröder, 2021. "How human capital, universities of excellence, third party funding, mobility and gender explain productivity in German political science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9649-9675, December.
    12. Batista-Jr, Antônio de Abreu & Gouveia, Fábio Castro & Mena-Chalco, Jesús P., 2021. "Predicting the Q of junior researchers using data from the first years of publication," Journal of Informetrics, Elsevier, vol. 15(2).
    13. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielle H. Lee, 2019. "Predictive power of conference-related factors on citation rates of conference papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 281-304, January.
    2. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    3. Li Hou & Qiang Wu & Yundong Xie, 2022. "Does early publishing in top journals really predict long-term scientific success in the business field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6083-6107, November.
    4. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    5. Shanwu Tian & Xiurui Xu & Ping Li, 2021. "Acknowledgement network and citation count: the moderating role of collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7837-7857, September.
    6. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    7. Lindahl, Jonas, 2018. "Predicting research excellence at the individual level: The importance of publication rate, top journal publications, and top 10% publications in the case of early career mathematicians," Journal of Informetrics, Elsevier, vol. 12(2), pages 518-533.
    8. Liu, Jialin & Chen, Hongkan & Liu, Zhibo & Bu, Yi & Gu, Weiye, 2022. "Non-linearity between referencing behavior and citation impact: A large-scale, discipline-level analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    9. Liu, Qiuling & Guo, Lei & Sun, Yiping & Ren, Linlin & Wang, Xinhua & Han, Xiaohui, 2024. "Do scholars' collaborative tendencies impact the quality of their publications? A generalized propensity score matching analysis," Journal of Informetrics, Elsevier, vol. 18(1).
    10. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    11. Zahedi, Zohreh & Haustein, Stefanie, 2018. "On the relationships between bibliographic characteristics of scientific documents and citation and Mendeley readership counts: A large-scale analysis of Web of Science publications," Journal of Informetrics, Elsevier, vol. 12(1), pages 191-202.
    12. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    13. Eitan Frachtenberg, 2022. "Multifactor Citation Analysis over Five Years: A Case Study of SIGMETRICS Papers," Publications, MDPI, vol. 10(4), pages 1-16, December.
    14. M. Teresa Antonio-García & Irene López-Navarro & Jesús Rey-Rocha, 2014. "Determinants of success for biomedical researchers: a perception-based study in a health science research environment," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1747-1779, December.
    15. Zhai, Li & Yan, Xiangbin, 2022. "A directed collaboration network for exploring the order of scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    16. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    17. Frandsen, Tove Faber & Jacobsen, Rasmus Højbjerg & Wallin, Johan A. & Brixen, Kim & Ousager, Jakob, 2015. "Gender differences in scientific performance: A bibliometric matching analysis of Danish health sciences Graduates," Journal of Informetrics, Elsevier, vol. 9(4), pages 1007-1017.
    18. Jonas Lindahl & Cristian Colliander & Rickard Danell, 2020. "Early career performance and its correlation with gender and publication output during doctoral education," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 309-330, January.
    19. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.
    20. Khosrowjerdi, Mahmood & Bornmann, Lutz, 2021. "Is culture related to strong science? An empirical investigation," Journal of Informetrics, Elsevier, vol. 15(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:121:y:2019:i:3:d:10.1007_s11192-019-03232-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.