IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v118y2019i3d10.1007_s11192-019-03016-z.html
   My bibliography  Save this article

Citations and certainty: a new interpretation of citation counts

Author

Listed:
  • Henry Small

    (SciTech Strategies, Inc.)

  • Kevin W. Boyack

    (SciTech Strategies, Inc.)

  • Richard Klavans

    (SciTech Strategies, Inc.)

Abstract

We report that the rate of hedging in citing sentences for biomedical papers is inversely related to the citations received by the papers as measured by the number of citances in citing papers. Hedging is often regarded as an expression of uncertainty in rhetorical studies of scientific text. Citing sentences, or citances, are retrieved from the PubMed Central database for papers having 10 or more citances, and the percentage of citances containing hedging words is plotted against the number of citances for the papers, which is closely related to the citation count. Hedging rates are computed separately for method and non-method papers, the latter being more frequently hedged. Rates of hedging are found to be higher for papers with fewer citances, suggesting that the certainty of scientific results is directly related to citation frequency. Similarly, early citations made soon after publication are more hedged than later citations. The implications of this finding for the interpretation of citation counts are discussed, and the directions for future research.

Suggested Citation

  • Henry Small & Kevin W. Boyack & Richard Klavans, 2019. "Citations and certainty: a new interpretation of citation counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1079-1092, March.
  • Handle: RePEc:spr:scient:v:118:y:2019:i:3:d:10.1007_s11192-019-03016-z
    DOI: 10.1007/s11192-019-03016-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03016-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03016-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Van Noorden & Brendan Maher & Regina Nuzzo, 2014. "The top 100 papers," Nature, Nature, vol. 514(7524), pages 550-553, October.
    2. Small, Henry, 2018. "Characterizing highly cited method and non-method papers using citation contexts: The role of uncertainty," Journal of Informetrics, Elsevier, vol. 12(2), pages 461-480.
    3. Boyack, Kevin W. & van Eck, Nees Jan & Colavizza, Giovanni & Waltman, Ludo, 2018. "Characterizing in-text citations in scientific articles: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 59-73.
    4. Small, Henry & Tseng, Hung & Patek, Mike, 2017. "Discovering discoveries: Identifying biomedical discoveries using citation contexts," Journal of Informetrics, Elsevier, vol. 11(1), pages 46-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoying Li & Suyuan Peng & Jian Du, 2021. "Towards medical knowmetrics: representing and computing medical knowledge using semantic predications as the knowledge unit and the uncertainty as the knowledge context," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6225-6251, July.
    2. Lutz Bornmann & K. Brad Wray & Robin Haunschild, 2020. "Citation concept analysis (CCA): a new form of citation analysis revealing the usefulness of concepts for other researchers illustrated by exemplary case studies including classic books by Thomas S. K," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1051-1074, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & K. Brad Wray & Robin Haunschild, 2020. "Citation concept analysis (CCA): a new form of citation analysis revealing the usefulness of concepts for other researchers illustrated by exemplary case studies including classic books by Thomas S. K," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1051-1074, February.
    2. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    3. Iman Tahamtan & Lutz Bornmann, 2019. "What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1635-1684, December.
    4. Small, Henry, 2018. "Characterizing highly cited method and non-method papers using citation contexts: The role of uncertainty," Journal of Informetrics, Elsevier, vol. 12(2), pages 461-480.
    5. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.
    6. Min, Chao & Bu, Yi & Sun, Jianjun, 2021. "Predicting scientific breakthroughs based on knowledge structure variations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    7. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    8. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    9. Coccia, Mario, 2022. "Probability of discoveries between research fields to explain scientific and technological change," Technology in Society, Elsevier, vol. 68(C).
    10. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    11. Lucy Semerjian & Kunle Okaiyeto & Mike O. Ojemaye & Temitope Cyrus Ekundayo & Aboi Igwaran & Anthony I. Okoh, 2021. "Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction," Sustainability, MDPI, vol. 13(20), pages 1-21, October.
    12. Tsukasa Kato, 2021. "Measurement Invariance in the Center for Epidemiologic Studies-Depression (CES-D) Scale among English-Speaking Whites and Asians," IJERPH, MDPI, vol. 18(10), pages 1-10, May.
    13. Tamara Krajna & Jelka Petrak, 2019. "Croatian Highly Cited Papers," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 684-696.
    14. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    15. Dean Palejev & Mladen Savov, 2021. "On the Convergence of the Benjamini–Hochberg Procedure," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
    16. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    17. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    18. Mike Thelwall, 2020. "Female citation impact superiority 1996–2018 in six out of seven English‐speaking nations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(8), pages 979-990, August.
    19. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    20. Laurent Linnemer & Michael Visser, 2016. "The Most Cited Articles from the Top-5 Journals (1991-2015)," CESifo Working Paper Series 5999, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:118:y:2019:i:3:d:10.1007_s11192-019-03016-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.