IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i2d10.1007_s11192-018-2771-1.html
   My bibliography  Save this article

Field- and time-normalization of data with many zeros: an empirical analysis using citation and Twitter data

Author

Listed:
  • Robin Haunschild

    (Max Planck Institute for Solid State Research)

  • Lutz Bornmann

    (Administrative Headquarters of the Max Planck Society)

Abstract

Thelwall (J Informetr 11(1):128–151, 2017a. https://doi.org/10.1016/j.joi.2016.12.002 ; Web indicators for research evaluation: a practical guide. Morgan and Claypool, London, 2017b) proposed a new family of field- and time-normalized indicators, which is intended for sparse data. These indicators are based on units of analysis (e.g., institutions) rather than on the paper level. They compare the proportion of mentioned papers (e.g., on Twitter) of a unit with the proportion of mentioned papers in the corresponding fields and publication years. We propose a new indicator (Mantel–Haenszel quotient, MHq) for the indicator family. The MHq is rooted in the Mantel–Haenszel (MH) analysis. This analysis is an established method, which can be used to pool the data from several 2 × 2 cross tables based on different subgroups. We investigate using citations and assessments by peers whether the indicator family can distinguish between quality levels defined by the assessments of peers. Thus, we test the convergent validity. We find that the MHq is able to distinguish between quality levels in most cases while other indicators of the family are not. Since our study approves the MHq as a convergent valid indicator, we apply the MHq to four different Twitter groups as defined by the company Altmetric. Our results show that there is a weak relationship between the Twitter counts of all four Twitter groups and scientific quality, much weaker than between citations and scientific quality. Therefore, our results discourage the use of Twitter counts in research evaluation.

Suggested Citation

  • Robin Haunschild & Lutz Bornmann, 2018. "Field- and time-normalization of data with many zeros: an empirical analysis using citation and Twitter data," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 997-1012, August.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2771-1
    DOI: 10.1007/s11192-018-2771-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2771-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2771-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludo Waltman & Rodrigo Costas, 2014. "F1000 Recommendations as a Potential New Data Source for Research Evaluation: A Comparison With Citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(3), pages 433-445, March.
    2. Lutz Bornmann & Robin Haunschild, 2016. "How to normalize Twitter counts? A first attempt based on journals in the Twitter Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1405-1422, June.
    3. Fairclough, Ruth & Thelwall, Mike, 2015. "National research impact indicators from Mendeley readers," Journal of Informetrics, Elsevier, vol. 9(4), pages 845-859.
    4. Lutz Bornmann & Robin Haunschild, 2017. "Measuring field-normalized impact of papers on specific societal groups: An altmetrics study based on Mendeley Data," Research Evaluation, Oxford University Press, vol. 26(3), pages 230-241.
    5. Rons, Nadine, 2012. "Partition-based Field Normalization: An approach to highly specialized publication records," Journal of Informetrics, Elsevier, vol. 6(1), pages 1-10.
    6. Mojisola Erdt & Aarthy Nagarajan & Sei-Ching Joanna Sin & Yin-Leng Theng, 2016. "Altmetrics: an analysis of the state-of-the-art in measuring research impact on social media," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1117-1166, November.
    7. Claveau, François, 2016. "There should not be any mystery: A comment on sampling issues in bibliometrics," Journal of Informetrics, Elsevier, vol. 10(4), pages 1233-1240.
    8. Thelwall, Mike, 2017. "Three practical field normalised alternative indicator formulae for research evaluation," Journal of Informetrics, Elsevier, vol. 11(1), pages 128-151.
    9. Haunschild, Robin & Bornmann, Lutz, 2016. "Normalization of Mendeley reader counts for impact assessment," Journal of Informetrics, Elsevier, vol. 10(1), pages 62-73.
    10. Williams, Richard & Bornmann, Lutz, 2016. "Sampling issues in bibliometric analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1225-1232.
    11. Lutz Bornmann, 2015. "Interrater reliability and convergent validity of F1000Prime peer review," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2415-2426, December.
    12. Franceschet, Massimo & Costantini, Antonio, 2011. "The first Italian research assessment exercise: A bibliometric perspective," Journal of Informetrics, Elsevier, vol. 5(2), pages 275-291.
    13. Bornmann, Lutz, 2014. "Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime," Journal of Informetrics, Elsevier, vol. 8(4), pages 935-950.
    14. Bornmann, Lutz & Haunschild, Robin, 2016. "Normalization of Mendeley reader impact on the reader- and paper-side: A comparison of the mean discipline normalized reader score (MDNRS) with the mean normalized reader score (MNRS) and bare reader ," Journal of Informetrics, Elsevier, vol. 10(3), pages 776-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Copiello, 2020. "Other than detecting impact in advance, alternative metrics could act as early warning signs of retractions: tentative findings of a study into the papers retracted by PLoS ONE," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2449-2469, December.
    2. Sergio Copiello, 2020. "Multi-criteria altmetric scores are likely to be redundant with respect to a subset of the underlying information," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 819-824, July.
    3. Wenceslao Arroyo-Machado & Daniel Torres-Salinas & Nicolas Robinson-Garcia, 2021. "Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9267-9289, November.
    4. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    5. Peiling Wang & Joshua Williams & Nan Zhang & Qiang Wu, 2020. "F1000Prime recommended articles and their citations: an exploratory study of four journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 933-955, February.
    6. Ting Cong & Zhichao Fang & Rodrigo Costas, 2022. "WeChat uptake of chinese scholarly journals: an analysis of CSSCI-indexed journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7091-7110, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bornmann, Lutz & Haunschild, Robin, 2018. "Normalization of zero-inflated data: An empirical analysis of a new indicator family and its use with altmetrics data," Journal of Informetrics, Elsevier, vol. 12(3), pages 998-1011.
    2. Liwei Zhang & Jue Wang, 2021. "What affects publications’ popularity on Twitter?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9185-9198, November.
    3. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    4. Thelwall, Mike, 2017. "Three practical field normalised alternative indicator formulae for research evaluation," Journal of Informetrics, Elsevier, vol. 11(1), pages 128-151.
    5. Mojisola Erdt & Aarthy Nagarajan & Sei-Ching Joanna Sin & Yin-Leng Theng, 2016. "Altmetrics: an analysis of the state-of-the-art in measuring research impact on social media," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1117-1166, November.
    6. Bornmann, Lutz & Leydesdorff, Loet, 2015. "Does quality and content matter for citedness? A comparison with para-textual factors and over time," Journal of Informetrics, Elsevier, vol. 9(3), pages 419-429.
    7. Thelwall, Mike & Fairclough, Ruth, 2017. "The accuracy of confidence intervals for field normalised indicators," Journal of Informetrics, Elsevier, vol. 11(2), pages 530-540.
    8. Bornmann, Lutz & Haunschild, Robin, 2016. "Normalization of Mendeley reader impact on the reader- and paper-side: A comparison of the mean discipline normalized reader score (MDNRS) with the mean normalized reader score (MNRS) and bare reader ," Journal of Informetrics, Elsevier, vol. 10(3), pages 776-788.
    9. Zhichao Fang & Rodrigo Costas & Wencan Tian & Xianwen Wang & Paul Wouters, 2020. "An extensive analysis of the presence of altmetric data for Web of Science publications across subject fields and research topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2519-2549, September.
    10. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    11. Lutz Bornmann & Klaus Wohlrabe, 2019. "Normalisation of citation impact in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 841-884, August.
    12. Lutz Bornmann & Rüdiger Mutz & Robin Haunschild & Felix Moya-Anegon & Mirko Almeida Madeira Clemente & Moritz Stefaner, 2021. "Mapping the impact of papers on various status groups in excellencemapping.net: a new release of the excellence mapping tool based on citation and reader scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9305-9331, November.
    13. Lutz Bornmann & Robin Haunschild, 2016. "How to normalize Twitter counts? A first attempt based on journals in the Twitter Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1405-1422, June.
    14. Ying Guo & Xiantao Xiao, 2022. "Author-level altmetrics for the evaluation of Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 973-990, February.
    15. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    16. Thelwall, Mike & Fairclough, Ruth, 2015. "The influence of time and discipline on the magnitude of correlations between citation counts and quality scores," Journal of Informetrics, Elsevier, vol. 9(3), pages 529-541.
    17. Mike Thelwall, 2018. "Differences between journals and years in the proportions of students, researchers and faculty registering Mendeley articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 717-729, May.
    18. Ortega, José Luis, 2018. "The life cycle of altmetric impact: A longitudinal study of six metrics from PlumX," Journal of Informetrics, Elsevier, vol. 12(3), pages 579-589.
    19. Lutz Bornmann & Robin Haunschild & Vanash M Patel, 2020. "Are papers addressing certain diseases perceived where these diseases are prevalent? The proposal to use Twitter data as social-spatial sensors," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    20. Bhaskar Mukherjee & Siniša Subotić & Ajay Kumar Chaubey, 2018. "And now for something completely different: the congruence of the Altmetric Attention Score’s structure between different article groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 253-275, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2771-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.