IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v8y2014i4p935-950.html
   My bibliography  Save this article

Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime

Author

Listed:
  • Bornmann, Lutz

Abstract

Can altmetric data be validly used for the measurement of societal impact? The current study seeks to answer this question with a comprehensive dataset (about 100,000 records) from very disparate sources (F1000, Altmetric, and an in-house database based on Web of Science). In the F1000 peer review system, experts attach particular tags to scientific papers which indicate whether a paper could be of interest for science or rather for other segments of society. The results show that papers with the tag “good for teaching” do achieve higher altmetric counts than papers without this tag – if the quality of the papers is controlled. At the same time, a higher citation count is shown especially by papers with a tag that is specifically scientifically oriented (“new finding”). The findings indicate that papers tailored for a readership outside the area of research should lead to societal impact.

Suggested Citation

  • Bornmann, Lutz, 2014. "Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime," Journal of Informetrics, Elsevier, vol. 8(4), pages 935-950.
  • Handle: RePEc:eee:infome:v:8:y:2014:i:4:p:935-950
    DOI: 10.1016/j.joi.2014.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157714000881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2014.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2013. "Which percentile-based approach should be preferred for calculating normalized citation impact values? An empirical comparison of five approaches including a newly developed citation-rank approach (P1," Journal of Informetrics, Elsevier, vol. 7(4), pages 933-944.
    2. Lutz Bornmann, 2013. "What is societal impact of research and how can it be assessed? a literature survey," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(2), pages 217-233, February.
    3. Lutz Bornmann & Werner Marx, 2014. "How should the societal impact of research be generated and measured? A proposal for a simple and practicable approach to allow interdisciplinary comparisons," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 211-219, January.
    4. Jonathan Grant, 1999. "Evaluating the outcomes of biomedical research on healthcare," Research Evaluation, Oxford University Press, vol. 8(1), pages 33-38, April.
    5. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    6. Ludo Waltman & Rodrigo Costas, 2014. "F1000 Recommendations as a Potential New Data Source for Research Evaluation: A Comparison With Citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(3), pages 433-445, March.
    7. Bornmann, Lutz & Williams, Richard, 2013. "How to calculate the practical significance of citation impact differences? An empirical example from evaluative institutional bibliometrics using adjusted predictions and marginal effects," Journal of Informetrics, Elsevier, vol. 7(2), pages 562-574.
    8. Ehsan Mohammadi & Mike Thelwall, 2013. "Assessing non-standard article impact using F1000 labels," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 383-395, November.
    9. Lutz Bornmann, 2014. "Is there currently a scientific revolution in Scientometrics?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(3), pages 647-648, March.
    10. Ehsan Mohammadi & Mike Thelwall, 2014. "Mendeley readership altmetrics for the social sciences and humanities: Research evaluation and knowledge flows," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(8), pages 1627-1638, August.
    11. Jian Wang, 2013. "Citation time window choice for research impact evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 851-872, March.
    12. J. Scott Long & Jeremy Freese, 2006. "Regression Models for Categorical Dependent Variables using Stata, 2nd Edition," Stata Press books, StataCorp LP, edition 2, number long2, March.
    13. Richard Williams, 2012. "Using the margins command to estimate and interpret adjusted predictions and marginal effects," Stata Journal, StataCorp LP, vol. 12(2), pages 308-331, June.
    14. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bornmann, Lutz, 2014. "Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics," Journal of Informetrics, Elsevier, vol. 8(4), pages 895-903.
    2. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    3. Lutz Bornmann, 2015. "Interrater reliability and convergent validity of F1000Prime peer review," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2415-2426, December.
    4. Ehsan Mohammadi & Mike Thelwall & Stefanie Haustein & Vincent Larivière, 2015. "Who reads research articles? An altmetrics analysis of Mendeley user categories," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(9), pages 1832-1846, September.
    5. Bornmann, Lutz & Marx, Werner, 2015. "Methods for the generation of normalized citation impact scores in bibliometrics: Which method best reflects the judgements of experts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 408-418.
    6. Peiling Wang & Joshua Williams & Nan Zhang & Qiang Wu, 2020. "F1000Prime recommended articles and their citations: an exploratory study of four journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 933-955, February.
    7. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    8. Bornmann, Lutz & Leydesdorff, Loet, 2015. "Does quality and content matter for citedness? A comparison with para-textual factors and over time," Journal of Informetrics, Elsevier, vol. 9(3), pages 419-429.
    9. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    10. Lutz Bornmann & Robin Haunschild & Werner Marx, 2016. "Policy documents as sources for measuring societal impact: how often is climate change research mentioned in policy-related documents?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1477-1495, December.
    11. Amalia Mas-Bleda & Mike Thelwall, 2016. "Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2007-2030, December.
    12. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    13. Mojisola Erdt & Aarthy Nagarajan & Sei-Ching Joanna Sin & Yin-Leng Theng, 2016. "Altmetrics: an analysis of the state-of-the-art in measuring research impact on social media," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1117-1166, November.
    14. Abramo, Giovanni, 2018. "Revisiting the scientometric conceptualization of impact and its measurement," Journal of Informetrics, Elsevier, vol. 12(3), pages 590-597.
    15. Liwei Zhang & Jue Wang, 2018. "Why highly cited articles are not highly tweeted? A biology case," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 495-509, October.
    16. Pech, Gerson & Delgado, Catarina, 2021. "Screening the most highly cited papers in longitudinal bibliometric studies and systematic literature reviews of a research field or journal: Widespread used metrics vs a percentile citation-based app," Journal of Informetrics, Elsevier, vol. 15(3).
    17. Bornmann, Lutz & Haunschild, Robin, 2015. "Which people use which scientific papers? An evaluation of data from F1000 and Mendeley," Journal of Informetrics, Elsevier, vol. 9(3), pages 477-487.
    18. Cao, Xuanyu & Chen, Yan & Ray Liu, K.J., 2016. "A data analytic approach to quantifying scientific impact," Journal of Informetrics, Elsevier, vol. 10(2), pages 471-484.
    19. Dudek Hanna & Wojewódzka-Wiewiórska Agnieszka, 2024. "Housing Deprivation Among Polish Households: Prevalence and Associated Factors," Real Estate Management and Valuation, Sciendo, vol. 32(2), pages 58-69.
    20. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.

    More about this item

    Keywords

    Altmetrics; Bibliometrics; F1000; Twitter; Societal impact;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:8:y:2014:i:4:p:935-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.