IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v115y2018i3d10.1007_s11192-018-2719-5.html
   My bibliography  Save this article

Characterization of the Cuban biopharmaceutical industry from collaborative networks

Author

Listed:
  • Maria Victoria Guzmán-Sánchez

    (Finlay Institute of Vaccines. BioCubaFarma)

  • Maybel Piñón-Lora

    (Autonomous University of Mexico City (UACM))

  • Elio Atenógenes Villaseñor-García

    (Center of Research and Innovation in Information and Communication Technologies (INFOTEC))

  • José Luis Jiménez-Andrade

    (National Autonomous University of Mexico (UNAM))

  • Humberto Carrillo-Calvet

    (National Autonomous University of Mexico (UNAM))

Abstract

Studies of scientific collaboration have introduced the concepts of collaborative networks. These networks may represent the social structure of a community of researchers or knowledge transmission in a specific country or economic sector. Cuban biopharmaceutical industry is an exceptional case study. This high-tech sector has achieved important development in the context of a “Third World” country, with a different political organization from the rest of the world. The main goal of this work is to characterize the Cuban biotechnology industry using collaborative networks. WoS database (1969–2016) was used and metric indicators of scientific collaboration obtained from the affiliation field. Netlike visualizations were produced with NodeXL software. BioCubaFarma meets about 50% of the total scientific production of all Cuban sectors. Since its foundation, the sector has maintained significant internal and external collaboration, with Europe, Latin America and the United States of America. The United States collaboration has been significant in the absence of diplomatic relations with that country. Collaboration is greater among centers of the old “scientific pole” than among old companies of the pharmaceutical sector. Moreover, there is a correlation between the magnitude of the scientific production and the collaboration levels. For the development of biomedicine in Cuba, collaboration has not been solely endogenous but has also represented a significant transfer of knowledge between Cuba and other countries.

Suggested Citation

  • Maria Victoria Guzmán-Sánchez & Maybel Piñón-Lora & Elio Atenógenes Villaseñor-García & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2018. "Characterization of the Cuban biopharmaceutical industry from collaborative networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1533-1548, June.
  • Handle: RePEc:spr:scient:v:115:y:2018:i:3:d:10.1007_s11192-018-2719-5
    DOI: 10.1007/s11192-018-2719-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2719-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2719-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanna Hottenrott & Cornelia Lawson, 2017. "A first look at multiple institutional affiliations: a study of authors in Germany, Japan and the UK," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 285-295, April.
    2. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    3. F. Moya-Anegón & V. Herrero-Solana, 1999. "Science in america latina: A comparison of bibliometric and scientific-technical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 46(2), pages 299-320, October.
    4. Henk F. Moed & Gali Halevi, 2014. "A bibliometric approach to tracking international scientific migration," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1987-2001, December.
    5. Ricardo Arencibia-Jorge & Elena Corera-Alvarez & Zaida Chinchilla-Rodríguez & Félix Moya-Anegón, 2016. "Scientific output of the emerging Cuban biopharmaceutical industry: a scientometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1621-1636, September.
    6. Wagner, Caroline S. & Leydesdorff, Loet, 2005. "Network structure, self-organization, and the growth of international collaboration in science," Research Policy, Elsevier, vol. 34(10), pages 1608-1618, December.
    7. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    8. Wolfgang Glänzel & Sarah Heeffer & Bart Thijs, 2016. "A triangular model for publication and citation statistics of individual authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 857-872, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernesto Galbán-Rodríguez & Déborah Torres-Ponjuán & Yohannis Martí-Lahera & Ricardo Arencibia-Jorge, 2019. "Measuring the Cuban scientific output in scholarly journals through a comprehensive coverage approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1019-1043, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    2. Winkler, Anne E. & Glänzel, Wolfgang & Levin, Sharon & Stephan, Paula, 2011. "The Diffusion of Information Technology and the Increased Propensity of Teams to Transcend Institutional and National Borders," IZA Discussion Papers 5857, Institute of Labor Economics (IZA).
    3. Zaida Chinchilla-Rodríguez & Yi Bu & Nicolás Robinson-García & Rodrigo Costas & Cassidy R. Sugimoto, 2018. "Travel bans and scientific mobility: utility of asymmetry and affinity indexes to inform science policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 569-590, July.
    4. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    5. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.
    6. Seongkyoon Jeong & Jae Young Choi, 2012. "The taxonomy of research collaboration in science and technology: evidence from mechanical research through probabilistic clustering analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 719-735, June.
    7. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    8. Svein Kyvik & Ingvild Reymert, 2017. "Research collaboration in groups and networks: differences across academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 951-967, November.
    9. Jo Royle & Louisa Coles & Dorothy Williams & Paul Evans, 2007. "Publishing in international journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(1), pages 59-86, April.
    10. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    11. Elizabeth S. Vieira & Jorge Cerdeira, 2022. "The integration of African countries in international research networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1995-2021, April.
    12. Leonardo Costa Ribeiro & Márcia Siqueira Rapini & Leandro Alves Silva & Eduardo Motta Albuquerque, 2018. "Growth patterns of the network of international collaboration in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 159-179, January.
    13. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2024. "Dubious cross-national affiliations obscure the assessment of international research collaboration," Journal of Informetrics, Elsevier, vol. 18(2).
    14. Hui Xuan Tan & Ephrance Abu Ujum & Kwai Fatt Choong & Kuru Ratnavelu, 2015. "Impact analysis of domestic and international research collaborations: a Malaysian case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 885-904, January.
    15. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    16. Claudia Noumedem Temgoua, 2018. "Highly skilled migration and the internationalization of knowledge," Cahiers du GREThA (2007-2019) 2018-16, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    17. Michael Cary & Taylor Rockwell, 2020. "International Collaboration in Open Access Publications: How Income Shapes International Collaboration," Publications, MDPI, vol. 8(1), pages 1-24, February.
    18. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    19. Neelam Kaushal & Rahul Pratap Singh Kaurav & Brijesh Sivathanu & Neeraj Kaushik, 2023. "Artificial intelligence and HRM: identifying future research Agenda using systematic literature review and bibliometric analysis," Management Review Quarterly, Springer, vol. 73(2), pages 455-493, June.
    20. Radhamany Sooryamoorthy, 2010. "Medical research in South Africa: a scientometric analysis of trends, patterns, productivity and partnership," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 863-885, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:115:y:2018:i:3:d:10.1007_s11192-018-2719-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.