IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v107y2016i1d10.1007_s11192-016-1871-z.html
   My bibliography  Save this article

Review time in peer review: quantitative analysis and modelling of editorial workflows

Author

Listed:
  • Maciej J. Mrowinski

    (Warsaw University of Technology)

  • Agata Fronczak

    (Warsaw University of Technology)

  • Piotr Fronczak

    (Warsaw University of Technology)

  • Olgica Nedic

    (University of Belgrade)

  • Marcel Ausloos

    (University of Leicester
    Royal Netherlands Academy of Arts and Sciences (NKVA)
    Group of Researchers for Applications of Physics in Economy and Sociology (GRAPES))

Abstract

In this paper, we undertake a data-driven theoretical investigation of editorial workflows. We analyse a dataset containing information about 58 papers submitted to the Biochemistry and Biotechnology section of the Journal of the Serbian Chemical Society. We separate the peer review process into stages that each paper has to go through and introduce the notion of completion rate - the probability that an invitation sent to a potential reviewer will result in a finished review. Using empirical transition probabilities and probability distributions of the duration of each stage we create a directed weighted network, the analysis of which allows us to obtain the theoretical probability distributions of review time for different classes of reviewers. These theoretical distributions underlie our numerical simulations of different editorial strategies. Through these simulations, we test the impact of some modifications of the editorial policy on the efficiency of the whole review process. We discover that the distribution of review time is similar for all classes of reviewers, and that the completion rate of reviewers known personally by the editor is very high, which means that they are much more likely to answer the invitation and finish the review than other reviewers. Thus, the completion rate is the key factor that determines the efficiency of each editorial policy. Our results may be of great importance for editors and act as a guide in determining the optimal number of reviewers.

Suggested Citation

  • Maciej J. Mrowinski & Agata Fronczak & Piotr Fronczak & Olgica Nedic & Marcel Ausloos, 2016. "Review time in peer review: quantitative analysis and modelling of editorial workflows," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 271-286, April.
  • Handle: RePEc:spr:scient:v:107:y:2016:i:1:d:10.1007_s11192-016-1871-z
    DOI: 10.1007/s11192-016-1871-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1871-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1871-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flaminio Squazzoni & Károly Takács, 2011. "Social Simulation That 'Peers into Peer Review'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(4), pages 1-3.
    2. Adrian Mulligan & Louise Hall & Ellen Raphael, 2013. "Peer review in a changing world: An international study measuring the attitudes of researchers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(1), pages 132-161, January.
    3. Virgina Trimble & Jose A. Ceja, 2011. "Are American astrophysics papers accepted more quickly than others?," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 281-289, October.
    4. Martijn Arns, 2014. "Open access is tiring out peer reviewers," Nature, Nature, vol. 515(7528), pages 467-467, November.
    5. Adrian Mulligan & Louise Hall & Ellen Raphael, 2013. "Peer review in a changing world: An international study measuring the attitudes of researchers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(1), pages 132-161, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sultan Orazbayev, 2017. "Sequential order as an extraneous factor in editorial decision," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1573-1592, December.
    2. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar & Mrowinski, Maciej J. & Fronczak, Piotr & Fronczak, Agata, 2017. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals. II. An ARCH econometric-like modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 462-474.
    3. Thomas Feliciani & Junwen Luo & Lai Ma & Pablo Lucas & Flaminio Squazzoni & Ana Marušić & Kalpana Shankar, 2019. "A scoping review of simulation models of peer review," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 555-594, October.
    4. Maciej J Mrowinski & Piotr Fronczak & Agata Fronczak & Marcel Ausloos & Olgica Nedic, 2017. "Artificial intelligence in peer review: How can evolutionary computation support journal editors?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-11, September.
    5. Sahana Roy Chowdhury, 2016. "When do referees shirk in a peer review process?," Economics and Business Letters, Oviedo University Press, vol. 5(2), pages 45-49.
    6. Xie, Yundong & Wu, Qiang & Wang, Yezhu & Hou, Li & Liu, Yuanyuan, 2024. "Does the handling time of scientific papers relate to their academic impact and social attention? Evidence from Nature, Science, and PNAS," Journal of Informetrics, Elsevier, vol. 18(2).
    7. Besim Bilalli & Rana Faisal Munir & Alberto Abelló, 2021. "A framework for assessing the peer review duration of journals: case study in computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 545-563, January.
    8. Maciej J. Mrowinski & Agata Fronczak & Piotr Fronczak & Olgica Nedic & Aleksandar Dekanski, 2020. "The hurdles of academic publishing from the perspective of journal editors: a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 115-133, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michail Kovanis & Ludovic Trinquart & Philippe Ravaud & Raphaël Porcher, 2017. "Evaluating alternative systems of peer review: a large-scale agent-based modelling approach to scientific publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 651-671, October.
    2. Maciej J Mrowinski & Piotr Fronczak & Agata Fronczak & Marcel Ausloos & Olgica Nedic, 2017. "Artificial intelligence in peer review: How can evolutionary computation support journal editors?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-11, September.
    3. Michail Kovanis & Raphaël Porcher & Philippe Ravaud & Ludovic Trinquart, 2016. "Complex systems approach to scientific publication and peer-review system: development of an agent-based model calibrated with empirical journal data," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 695-715, February.
    4. Michail Kovanis & Raphaël Porcher & Philippe Ravaud & Ludovic Trinquart, 2016. "The Global Burden of Journal Peer Review in the Biomedical Literature: Strong Imbalance in the Collective Enterprise," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    5. J. A. Garcia & Rosa Rodriguez-Sánchez & J. Fdez-Valdivia, 2021. "The interplay between the reviewer’s incentives and the journal’s quality standard," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3041-3061, April.
    6. Rodríguez Sánchez, Isabel & Makkonen, Teemu & Williams, Allan M., 2019. "Peer review assessment of originality in tourism journals: critical perspective of key gatekeepers," Annals of Tourism Research, Elsevier, vol. 77(C), pages 1-11.
    7. Alessandro Checco & Lorenzo Bracciale & Pierpaolo Loreti & Stephen Pinfield & Giuseppe Bianchi, 2021. "AI-assisted peer review," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    8. Kuklin, Alexander A. (Куклин, Александр) & Balyakina, Evgeniya A. (Балякина, Евгения), 2017. "Active policy as a key to success for an International Economic Periodical [Активная Политика — Залог Успеха Международного Экономического Журнала]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 6, pages 160-177, December.
    9. Vivian M Nguyen & Neal R Haddaway & Lee F G Gutowsky & Alexander D M Wilson & Austin J Gallagher & Michael R Donaldson & Neil Hammerschlag & Steven J Cooke, 2015. "How Long Is Too Long in Contemporary Peer Review? Perspectives from Authors Publishing in Conservation Biology Journals," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
    10. Dietmar Wolfram & Peiling Wang & Adam Hembree & Hyoungjoo Park, 2020. "Open peer review: promoting transparency in open science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1033-1051, November.
    11. Bianchi, Federico & Grimaldo, Francisco & Squazzoni, Flaminio, 2019. "The F3-index. Valuing reviewers for scholarly journals," Journal of Informetrics, Elsevier, vol. 13(1), pages 78-86.
    12. Yuetong Chen & Hao Wang & Baolong Zhang & Wei Zhang, 2022. "A method of measuring the article discriminative capacity and its distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3317-3341, June.
    13. Paul Sebo & Jean Pascal Fournier & Claire Ragot & Pierre-Henri Gorioux & François R. Herrmann & Hubert Maisonneuve, 2019. "Factors associated with publication speed in general medical journals: a retrospective study of bibliometric data," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1037-1058, May.
    14. Qianjin Zong & Yafen Xie & Jiechun Liang, 2020. "Does open peer review improve citation count? Evidence from a propensity score matching analysis of PeerJ," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 607-623, October.
    15. Eirini Delikoura & Dimitrios Kouis, 2021. "Open Research Data and Open Peer Review: Perceptions of a Medical and Health Sciences Community in Greece," Publications, MDPI, vol. 9(2), pages 1-19, March.
    16. Narjes Vara & Mahdieh Mirzabeigi & Hajar Sotudeh & Seyed Mostafa Fakhrahmad, 2022. "Application of k-means clustering algorithm to improve effectiveness of the results recommended by journal recommender system," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3237-3252, June.
    17. Katarina Krapež, 2022. "Advancing Self-Evaluative and Self-Regulatory Mechanisms of Scholarly Journals: Editors’ Perspectives on What Needs to Be Improved in the Editorial Process," Publications, MDPI, vol. 10(1), pages 1-18, March.
    18. Pengfei Jia & Weixi Xie & Guangyao Zhang & Xianwen Wang, 2023. "Do reviewers get their deserved acknowledgments from the authors of manuscripts?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5687-5703, October.
    19. Jens Peter Andersen & Serge P. J. M. Horbach & Tony Ross-Hellauer, 2024. "Through the secret gate: a study of member-contributed submissions in PNAS," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5673-5687, September.
    20. J. Israel Martínez-López & Samantha Barrón-González & Alejandro Martínez López, 2019. "Which Are the Tools Available for Scholars? A Review of Assisting Software for Authors during Peer Reviewing Process," Publications, MDPI, vol. 7(3), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:107:y:2016:i:1:d:10.1007_s11192-016-1871-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.