IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v105y2015i3d10.1007_s11192-015-1640-4.html
   My bibliography  Save this article

Measuring and visualizing the contributions of Chinese and American LIS research institutions to emerging themes and salient themes

Author

Listed:
  • Lu An

    (Wuhan University)

  • Xia Lin

    (Drexel University)

  • Chuanming Yu

    (Zhongnan University of Economics and Law)

  • Xinwen Zhang

    (Wuhan University)

Abstract

Novelty and salience of the research topics are vital for the competitiveness of research institutions and the development of science and technology. In this study, two novel weighting methods were proposed to differentiate the emergence and salience of research topics. A methodology was constructed to measure and visualize the contributions of research institutions to emerging themes and salient ones. The methods were illustrated with the data of ninety Chinese and American Library and Information Science research institutions collected from the Engineering Compendex and China National Knowledge Infrastructure databases between 2001 and 2012. The contributions of the investigated research institutions to the emerging themes and salient ones were calculated and visualized with the Treemap technique. The institutions were further ranked by their contributions and categorized into four types. The findings can help research institutions evaluate novelty and salience of their research topics, discover research fronts and hotspots and promote their research development.

Suggested Citation

  • Lu An & Xia Lin & Chuanming Yu & Xinwen Zhang, 2015. "Measuring and visualizing the contributions of Chinese and American LIS research institutions to emerging themes and salient themes," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1605-1634, December.
  • Handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1640-4
    DOI: 10.1007/s11192-015-1640-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1640-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1640-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. B. Piwowarski & M.R. Amini & M. Lalmas, 2012. "On using a quantum physics formalism for multidocument summarization," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 865-888, May.
    3. Wolfgang Glänzel & Bart Thijs, 2012. "Using ‘core documents’ for detecting and labelling new emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 399-416, May.
    4. David A Griffith & Salih Tamer Cavusgil & Shichun Xu, 2008. "Emerging themes in international business research," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 39(7), pages 1220-1235, October.
    5. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    6. An, Lu & Yu, Chuanming & Li, Gang, 2014. "Visual topical analysis of Chinese and American Library and Information Science research institutions," Journal of Informetrics, Elsevier, vol. 8(1), pages 217-233.
    7. B. Piwowarski & M.R. Amini & M. Lalmas, 2012. "On using a quantum physics formalism for multidocument summarization," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 865-888, May.
    8. Moed, Henk F. & de Moya-Anegón, Félix & López-Illescas, Carmen & Visser, Martijn, 2011. "Is concentration of university research associated with better research performance?," Journal of Informetrics, Elsevier, vol. 5(4), pages 649-658.
    9. Woo Hyoung Lee, 2008. "How to identify emerging research fields using scientometrics: An example in the field of Information Security," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 503-525, September.
    10. Toshiyuki Asahi & David Turo & Ben Shneiderman, 1995. "Using Treemaps to Visualize the Analytic Hierarchy Process," Information Systems Research, INFORMS, vol. 6(4), pages 357-375, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    2. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2017. "A measure of staying power: Is the persistence of emergent concepts more significantly influenced by technical domain or scale?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2077-2087, June.
    3. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    4. Manika Lamba & Margam Madhusudhan, 2019. "Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 477-505, August.
    5. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Jarić & Jelena Knežević-Jarić & Mirjana Lenhardt, 2014. "Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 519-529, August.
    2. Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
    3. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    4. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    5. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
    6. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    7. Zhichao Fang & Rodrigo Costas & Wencan Tian & Xianwen Wang & Paul Wouters, 2020. "An extensive analysis of the presence of altmetric data for Web of Science publications across subject fields and research topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2519-2549, September.
    8. Wencan Tian & Yongzhen Wang & Zhigang Hu & Ruonan Cai & Guangyao Zhang & Xianwen Wang, 2024. "Does Granger causality exist between article usage and publication counts? A topic-level time-series evidence from IEEE Xplore," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3285-3302, June.
    9. Ryosuke L. Ohniwa & Aiko Hibino & Kunio Takeyasu, 2010. "Trends in research foci in life science fields over the last 30 years monitored by emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 111-127, October.
    10. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    11. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    12. Persson, Olle, 2010. "Identifying research themes with weighted direct citation links," Journal of Informetrics, Elsevier, vol. 4(3), pages 415-422.
    13. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    14. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    15. Holly N. Wolcott & Matthew J. Fouch & Elizabeth R. Hsu & Leo G. DiJoseph & Catherine A. Bernaciak & James G. Corrigan & Duane E. Williams, 2016. "Modeling time-dependent and -independent indicators to facilitate identification of breakthrough research papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 807-817, May.
    16. Henry Small & Phineas Upham, 2009. "Citation structure of an emerging research area on the verge of application," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(2), pages 365-375, May.
    17. Fabrizio Natale & Gianluca Fiore & Johann Hofherr, 2012. "Mapping the research on aquaculture. A bibliometric analysis of aquaculture literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 983-999, March.
    18. Guo Chen & Lu Xiao & Chang-ping Hu & Xue-qin Zhao, 2015. "Identifying the research focus of Library and Information Science institutions in China with institution-specific keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 707-724, May.
    19. Woo, Seokkyun & Youtie, Jan & Ott, Ingrid & Scheu, Fenja, 2021. "Understanding the long-term emergence of autonomous vehicles technologies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    20. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1640-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.