IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v104y2015i3d10.1007_s11192-015-1567-9.html
   My bibliography  Save this article

Predicting results of the research excellence framework using departmental h-index: revisited

Author

Listed:
  • O. Mryglod

    (Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine)

  • R. Kenna

    (Coventry University)

  • Yu. Holovatch

    (Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine)

  • B. Berche

    (Université de Lorraine)

Abstract

We revisit our recent study [Predicting results of the Research Excellence Framework using departmental h-index, Scientometrics, 2014, 102:2165–2180; arXiv:1411.1996 ] in which we attempted to predict outcomes of the UK’s Research Excellence Framework (REF 2014) using the so-called departmental h-index. Here we report that our predictions failed to anticipate with any accuracy either overall REF outcomes or movements of individual institutions in the rankings relative to their positions in the previous Research Assessment Exercise (RAE 2008).

Suggested Citation

  • O. Mryglod & R. Kenna & Yu. Holovatch & B. Berche, 2015. "Predicting results of the research excellence framework using departmental h-index: revisited," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 1013-1017, September.
  • Handle: RePEc:spr:scient:v:104:y:2015:i:3:d:10.1007_s11192-015-1567-9
    DOI: 10.1007/s11192-015-1567-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1567-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1567-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Mryglod & R. Kenna & Yu. Holovatch & B. Berche, 2013. "Absolute and specific measures of research group excellence," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 115-127, April.
    2. O. Mryglod & R. Kenna & Yu. Holovatch & B. Berche, 2013. "Comparison of a citation-based indicator and peer review for absolute and specific measures of research-group excellence," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 767-777, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thelwall, Mike & Kousha, Kayvan & Stuart, Emma & Makita, Meiko & Abdoli, Mahshid & Wilson, Paul & Levitt, Jonathan, 2023. "Do bibliometrics introduce gender, institutional or interdisciplinary biases into research evaluations?," Research Policy, Elsevier, vol. 52(8).
    2. Daniele Checchi & Alberto Ciolfi & Gianni De Fraja & Irene Mazzotta & Stefano Verzillo, 2021. "Have you Read This? An Empirical Comparison of the British REF Peer Review and the Italian VQR Bibliometric Algorithm," Economica, London School of Economics and Political Science, vol. 88(352), pages 1107-1129, October.
    3. James Tooley & Barrie Craven, 2018. "Private Sector Alternatives to the Research Excellence Framework for University League Tables," Economic Affairs, Wiley Blackwell, vol. 38(3), pages 434-443, October.
    4. Shahd Al-Janabi & Lee Wei Lim & Luca Aquili, 2021. "Development of a tool to accurately predict UK REF funding allocation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8049-8062, September.
    5. Alberto Baccini & Giuseppe De Nicolao, 2016. "Do they agree? Bibliometric evaluation versus informed peer review in the Italian research assessment exercise," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1651-1671, September.
    6. Giovanni Abramo & Ciriaco Andrea D’Angelo & Emanuela Reale, 2019. "Peer review versus bibliometrics: Which method better predicts the scholarly impact of publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 537-554, October.
    7. Basso, Antonella & di Tollo, Giacomo, 2022. "Prediction of UK research excellence framework assessment by the departmental h-index," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1036-1049.
    8. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Iori, Giulia & Maynou, Laia & Tumminello, Michele & Vassallo, Pietro, 2023. "Performance-based research funding: Evidence from the largest natural experiment worldwide," Research Policy, Elsevier, vol. 52(6).
    9. Lloyd D Balbuena, 2018. "The UK Research Excellence Framework and the Matthew effect: Insights from machine learning," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Benneworth, 2015. "Between certainty and comprehensiveness in evaluating the societal impact of humanities research," CHEPS Working Papers 201502, University of Twente, Center for Higher Education Policy Studies (CHEPS).
    2. Hana Tomaskova & Martin Kopecky, 2020. "Specialization of Business Process Model and Notation Applications in Medicine—A Review," Data, MDPI, vol. 5(4), pages 1-42, October.
    3. R. Álvarez & E. Cahué & J. Clemente-Gallardo & A. Ferrer & D. Íñiguez & X. Mellado & A. Rivero & G. Ruiz & F. Sanz & E. Serrano & A. Tarancón & Y. Vergara, 2015. "Analysis of academic productivity based on Complex Networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 651-672, September.
    4. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    5. Liyin Zhang & Yuchen Qian & Chao Ma & Jiang Li, 2023. "Continued collaboration shortens the transition period of scientists who move to another institution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1765-1784, March.
    6. Stephan B. Bruns & David I. Stern, 2016. "Research assessment using early citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 917-935, August.
    7. Uddin, Shahadat & Khan, Arif, 2016. "The impact of author-selected keywords on citation counts," Journal of Informetrics, Elsevier, vol. 10(4), pages 1166-1177.
    8. O. Mryglod & R. Kenna & Yu. Holovatch & B. Berche, 2015. "Predicting results of the Research Excellence Framework using departmental h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2165-2180, March.
    9. Elio Atenógenes Villaseñor & Ricardo Arencibia-Jorge & Humberto Carrillo-Calvet, 2017. "Multiparametric characterization of scientometric performance profiles assisted by neural networks: a study of Mexican higher education institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 77-104, January.
    10. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    11. Zhongyi Wang & Keying Wang & Jiyue Liu & Jing Huang & Haihua Chen, 2022. "Measuring the innovation of method knowledge elements in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2803-2827, May.
    12. O. Mryglod & Yu. Holovatch & R. Kenna, 2022. "Big fish and small ponds: why the departmental h-index should not be used to rank universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3279-3292, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:104:y:2015:i:3:d:10.1007_s11192-015-1567-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.