IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i503p755-770.html
   My bibliography  Save this article

Multinomial Inverse Regression for Text Analysis

Author

Listed:
  • Matt Taddy

Abstract

Text data, including speeches, stories, and other document forms, are often connected to sentiment variables that are of interest for research in marketing, economics, and elsewhere. It is also very high dimensional and difficult to incorporate into statistical analyses. This article introduces a straightforward framework of sentiment-sufficient dimension reduction for text data. Multinomial inverse regression is introduced as a general tool for simplifying predictor sets that can be represented as draws from a multinomial distribution, and we show that logistic regression of phrase counts onto document annotations can be used to obtain low-dimensional document representations that are rich in sentiment information. To facilitate this modeling, a novel estimation technique is developed for multinomial logistic regression with very high-dimensional response. In particular, independent Laplace priors with unknown variance are assigned to each regression coefficient, and we detail an efficient routine for maximization of the joint posterior over coefficients and their prior scale. This "gamma-lasso" scheme yields stable and effective estimation for general high-dimensional logistic regression, and we argue that it will be superior to current methods in many settings. Guidelines for prior specification are provided, algorithm convergence is detailed, and estimator properties are outlined from the perspective of the literature on nonconcave likelihood penalization. Related work on sentiment analysis from statistics, econometrics, and machine learning is surveyed and connected. Finally, the methods are applied in two detailed examples and we provide out-of-sample prediction studies to illustrate their effectiveness.

Suggested Citation

  • Matt Taddy, 2013. "Multinomial Inverse Regression for Text Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 755-770, September.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:503:p:755-770
    DOI: 10.1080/01621459.2012.734168
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.734168
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.734168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:503:p:755-770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.