IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i1d10.1007_s13571-021-00263-0.html
   My bibliography  Save this article

Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution

Author

Listed:
  • Raj Kamal Maurya

    (Sardar Vallabhbhai National Institute of Technology)

  • Yogesh Mani Tripathi

    (Indian Institute of Technology Patna)

  • Tanmay Kayal

    (neurIOT Technologies LLP)

Abstract

Reliability inference in a multicomponent stress-strength (MSS) model is studied when components are exposed to a specific random stress. Stress and strength variables are assumed to follow inverse Weibull distributions with different scale and same shape parameter. A s-out-of-k:G system fails if s or more components simultaneously become inoperative. Different estimates of MSS reliability are obtained from frequentist and Bayesian viewpoint. In particular Bayes estimates are evaluated from Lindley method and Metropolis-Hastings algorithm. Unbiased estimation is also considered when shape parameter is known. We construct asymptotic intervals and obtain corresponding coverage probabilities using observed information matrix. In sequel credible intervals are also obtained. A simulation study is performed to examine the estimated risks of proposed estimation methods and analyze two numerical examples from application viewpoint. Finally, optimal plans are discussed for the multicomponent system.

Suggested Citation

  • Raj Kamal Maurya & Yogesh Mani Tripathi & Tanmay Kayal, 2022. "Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 364-401, May.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00263-0
    DOI: 10.1007/s13571-021-00263-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-021-00263-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-021-00263-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    2. Kundu, Debasis & Howlader, Hatem, 2010. "Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1547-1558, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    2. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    3. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    4. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    5. Hassan M. Okasha & Abdulkareem M. Basheer & Yuhlong Lio, 2022. "The E-Bayesian Methods for the Inverse Weibull Distribution Rate Parameter Based on Two Types of Error Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-27, December.
    6. Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.
    7. Hamdy M. Salem, 2019. "The Marshall–Olkin Generalized Inverse Weibull Distribution: Properties and Application," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 1-54, February.
    8. Hanieh Panahi & Abdolreza Sayyareh, 2014. "Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 215-232, January.
    9. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    10. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    11. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    12. Mohammed S. Kotb & Haidy A. Newer & Marwa M. Mohie El-Din, 2024. "Bayesian Inference for the Entropy of the Rayleigh Model Based on Ordered Ranked Set Sampling," Annals of Data Science, Springer, vol. 11(4), pages 1435-1458, August.
    13. Abdulkareem M. Basheer & H. M. Okasha & A. H. El-Baz & A. M. K. Tarabia, 2023. "E-Bayesian and Hierarchical Bayesian Estimations for the Inverse Weibull Distribution," Annals of Data Science, Springer, vol. 10(3), pages 737-759, June.
    14. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    15. Sarah R. Al-Dawsari & Khalaf S. Sultan, 2021. "Inverted Weibull Regression Models and Their Applications," Stats, MDPI, vol. 4(2), pages 1-22, April.
    16. Manoj Kumar Rastogi & Yogesh Mani Tripathi, 2014. "Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2375-2405, November.
    17. Sanku Dey & Tanujit Dey, 2014. "On progressively censored generalized inverted exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2557-2576, December.
    18. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    19. Tien Thanh Thach & Radim Bris, 2020. "Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 234(3), pages 496-511, June.
    20. Sanjay Kumar Singh & Umesh Singh & Dinesh Kumar, 2013. "Bayesian estimation of parameters of inverse Weibull distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1597-1607, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00263-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.