IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v85y2023i2d10.1007_s13171-023-00309-7.html
   My bibliography  Save this article

Equivalence of Asymptotic Normality of the Two Sample Pivot and the Vector of Standardized Sample Means

Author

Listed:
  • Rajeshwari Majumdar

    (New York University)

  • Suman Majumdar

    (University of Connecticut)

Abstract

From an infinite sequence of independent random vectors in the plane, where each coordinate sequence consists of identically distributed random variables that have a finite second moment, we construct a double sequence of random vectors consisting of the standardized sample means from the two coordinates with different sample sizes. We show that as the two sample sizes tend to infinity, convergence in distribution of this vector of standardized sample means to the standard Normal distribution on the plane, convergence in Cesàro means of the sequence of cross-sample correlation coefficients to 0, and convergence in distribution of the well-known two sample pivot for comparing the two coordinate means to the standard Normal distribution on the line are equivalent.

Suggested Citation

  • Rajeshwari Majumdar & Suman Majumdar, 2023. "Equivalence of Asymptotic Normality of the Two Sample Pivot and the Vector of Standardized Sample Means," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1684-1707, August.
  • Handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-023-00309-7
    DOI: 10.1007/s13171-023-00309-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-023-00309-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-023-00309-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Subrata & Majumdar, Suman & Mukherjee, Kanchan, 2000. "Central Limit Theorems revisited," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 265-275, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    2. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    3. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    4. Joydeep Chowdhury & Probal Chaudhuri, 2020. "Convergence rates for kernel regression in infinite-dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 471-509, April.
    5. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    6. Gupta, A. K. & Henze, N. & Klar, B., 2004. "Testing for affine equivalence of elliptically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 222-242, February.
    7. Delgado, Miguel A. & Song, Xiaojun, 2018. "Nonparametric tests for conditional symmetry," Journal of Econometrics, Elsevier, vol. 206(2), pages 447-471.
    8. Krebs, Johannes T.N., 2019. "The bootstrap in kernel regression for stationary ergodic data when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 620-639.
    9. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    10. G. I. Rivas-Martínez & M. D. Jiménez-Gamero & J. L. Moreno-Rebollo, 2019. "A two-sample test for the error distribution in nonparametric regression based on the characteristic function," Statistical Papers, Springer, vol. 60(4), pages 1369-1395, August.
    11. Petr Čoupek & Viktor Dolník & Zdeněk Hlávka & Daniel Hlubinka, 2024. "Fourier approach to goodness-of-fit tests for Gaussian random processes," Statistical Papers, Springer, vol. 65(5), pages 2937-2972, July.
    12. L. Baringhaus & D. Kolbe, 2015. "Two-sample tests based on empirical Hankel transforms," Statistical Papers, Springer, vol. 56(3), pages 597-617, August.
    13. Apostolos Batsidis & María Dolores Jiménez-Gamero & Artur J. Lemonte, 2020. "On goodness-of-fit tests for the Bell distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 297-319, April.
    14. Jiménez-Gamero, M.D. & Alba-Fernández, M.V., 2019. "Testing for the Poisson–Tweedie distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 146-162.
    15. Baringhaus, Ludwig & Gaigall, Daniel, 2023. "A goodness-of-fit test for the compound Poisson exponential model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    16. Bruno Ebner & Norbert Henze & Simos Meintanis, 2024. "A unified approach to goodness-of-fit testing for spherical and hyperspherical data," Statistical Papers, Springer, vol. 65(6), pages 3447-3475, August.
    17. Ferraty, F. & Van Keilegom, I. & Vieu, P., 2012. "Regression when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 10-28.
    18. Norbert Henze & Pierre Lafaye De Micheaux & Simos G. Meintanis, 2022. "Tests for circular symmetry of complex-valued random vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 488-518, June.
    19. Shishebor, Z. & Soltani, A.R. & Zamani, A., 2011. "Asymptotic distribution for periodograms of infinite dimensional discrete time periodically correlated processes," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1118-1125, August.
    20. Norbert Henze & Stefan Koch, 2020. "On a test of normality based on the empirical moment generating function," Statistical Papers, Springer, vol. 61(1), pages 17-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-023-00309-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.