IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v98y2021i3d10.1007_s11134-021-09700-3.html
   My bibliography  Save this article

Pass-and-swap queues

Author

Listed:
  • Céline Comte

    (Eindhoven University of Technology)

  • Jan-Pieter Dorsman

    (University of Amsterdam)

Abstract

Order-independent (OI) queues, introduced by Berezner et al. (Queueing Syst 19(4):345–359, 1995), expanded the family of multi-class queues that are known to have a product-form stationary distribution by allowing for intricate class-dependent service rates. This paper further broadens this family by introducing pass-and-swap (P&S) queues, an extension of OI queues where, upon a service completion, the customer that completes service is not necessarily the one that leaves the system. More precisely, we supplement the OI queue model with an undirected graph on the customer classes, which we call a swapping graph, such that there is an edge between two classes if customers of these classes can be swapped with one another. When a customer completes service, it passes over customers in the remainder of the queue until it finds a customer it can swap positions with, that is, a customer whose class is a neighbor in the graph. In its turn, the customer that is ejected from its position takes the position of the next customer it can be swapped with, and so on. This is repeated until a customer can no longer find another customer to be swapped with; this customer is the one that leaves the queue. After proving that P&S queues have a product-form stationary distribution, we derive a necessary and sufficient stability condition for (open networks of) P&S queues that also applies to OI queues. We then study irreducibility properties of closed networks of P&S queues and derive the corresponding product-form stationary distribution. Lastly, we demonstrate that closed networks of P&S queues can be applied to describe the dynamics of new and existing load-distribution and scheduling protocols in clusters of machines in which jobs have assignment constraints.

Suggested Citation

  • Céline Comte & Jan-Pieter Dorsman, 2021. "Pass-and-swap queues," Queueing Systems: Theory and Applications, Springer, vol. 98(3), pages 275-331, August.
  • Handle: RePEc:spr:queues:v:98:y:2021:i:3:d:10.1007_s11134-021-09700-3
    DOI: 10.1007/s11134-021-09700-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-021-09700-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-021-09700-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nico M. Dijk, 2011. "On Practical Product Form Characterizations," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. Dijk (ed.), Queueing Networks, chapter 0, pages 1-83, Springer.
    2. Kristen Gardner & Samuel Zbarsky & Sherwin Doroudi & Mor Harchol-Balter & Esa Hyytiä & Alan Scheller-Wolf, 2016. "Queueing with redundant requests: exact analysis," Queueing Systems: Theory and Applications, Springer, vol. 83(3), pages 227-259, August.
    3. James R. Jackson, 1957. "Networks of Waiting Lines," Operations Research, INFORMS, vol. 5(4), pages 518-521, August.
    4. A. E. Krzesinski, 2011. "Order Independent Queues," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. Dijk (ed.), Queueing Networks, chapter 0, pages 85-120, Springer.
    5. Kristen Gardner & Rhonda Righter, 2020. "Product forms for FCFS queueing models with arbitrary server-job compatibilities: an overview," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 3-51, October.
    6. Xiuli Chao, 2011. "Networks with Customers, Signals, and Product Form Solution," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. Dijk (ed.), Queueing Networks, chapter 0, pages 217-267, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Castro & Hamid Nazerzadeh & Chiwei Yan, 2020. "Matching queues with reneging: a product form solution," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 359-385, December.
    2. Kristen Gardner & Rhonda Righter, 2020. "Product forms for FCFS queueing models with arbitrary server-job compatibilities: an overview," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 3-51, October.
    3. Nico Dijk & Barteld Schilstra, 2022. "On two product form modifications for finite overflow systems," Annals of Operations Research, Springer, vol. 310(2), pages 519-549, March.
    4. Jocelyn Begeot & Irène Marcovici & Pascal Moyal, 2023. "Stability regions of systems with compatibilities and ubiquitous measures on graphs," Queueing Systems: Theory and Applications, Springer, vol. 103(3), pages 275-312, April.
    5. Kristen Gardner & Rhonda Righter, 2022. "The cost of collaboration," Queueing Systems: Theory and Applications, Springer, vol. 100(1), pages 7-40, February.
    6. Gideon Weiss, 2022. "Parallel multi-type many server conjecture," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 269-271, April.
    7. Gideon Weiss, 2020. "Directed FCFS infinite bipartite matching," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 387-418, December.
    8. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    9. Jennifer Sommer & Joost Berkhout & Hans Daduna & Bernd Heidergott, 2017. "Analysis of Jackson networks with infinite supply and unreliable nodes," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 181-207, October.
    10. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    11. Neil Walton, 2022. "Queueing: a perennial theory," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 557-559, April.
    12. Rosario Delgado, 2010. "State space collapse and stability of queueing networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 477-499, December.
    13. Ward Whitt & Wei You, 2022. "New decomposition approximations for queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 365-367, April.
    14. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    15. Sauer Cornelia & Daduna Hans, 2003. "Availability Formulas and Performance Measures for Separable Degradable Networks," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 165-194, January.
    16. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    17. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    18. Anthony Ebert & Ritabrata Dutta & Kerrie Mengersen & Antonietta Mira & Fabrizio Ruggeri & Paul Wu, 2021. "Likelihood‐free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 770-792, June.
    19. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    20. Mohammadi Bidhandi, Hadi & Patrick, Jonathan & Noghani, Pedram & Varshoei, Peyman, 2019. "Capacity planning for a network of community health services," European Journal of Operational Research, Elsevier, vol. 275(1), pages 266-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:98:y:2021:i:3:d:10.1007_s11134-021-09700-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.